Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Hänßle, Holger [VerfasserIn]   i
 Winkler, Julia K. [VerfasserIn]   i
 Müller-Christmann, Christine [VerfasserIn]   i
 Toberer, Ferdinand [VerfasserIn]   i
 Enk, Alexander [VerfasserIn]   i
 Stolz, Wilhelm [VerfasserIn]   i
 Deinlein, Teresa [VerfasserIn]   i
 Hofmann-Wellenhof, Rainer [VerfasserIn]   i
 Kittler, Harald [VerfasserIn]   i
 Tschandl, Philipp [VerfasserIn]   i
 Rosendahl, Cliff [VerfasserIn]   i
 Lallas, Aimilios [VerfasserIn]   i
 Blum, Andreas [VerfasserIn]   i
 Abassi, Mohamed Souhayel [VerfasserIn]   i
 Thomas, Luc [VerfasserIn]   i
 Tromme, Isabelle [VerfasserIn]   i
 Alt, Christina [VerfasserIn]   i
Titel:Skin lesions of face and scalp
Titelzusatz:classification by a market-approved convolutional neural network in comparison with 64 dermatologists
Verf.angabe:Holger Andreas Haenssle, Julia Katharina Winkler, Christine Fink, Ferdinand Toberer, Alexander Enk, Wilhelm Stolz, Teresa Deinlein, Rainer Hofmann-Wellenhof, Harald Kittler, Philipp Tschandl, Cliff Rosendahl, Aimilios Lallas, Andreas Blum, Mohamed Souhayel Abassi, Luc Thomas, Isabelle Tromme, Albert Rosenberger, reader study level-I and level-II groups Christina Alt
Jahr:2021
Jahr des Originals:2020
Umfang:8 S.
Fussnoten:Available online 25 December 2020 ; Gesehen am 03.03.2021
Titel Quelle:Enthalten in: European journal of cancer
Ort Quelle:Amsterdam [u.a.] : Elsevier, 1992
Jahr Quelle:2021
Band/Heft Quelle:144(2021), Seite 192-199
ISSN Quelle:1879-0852
Abstract:Background - The clinical differentiation of face and scalp lesions (FSLs) is challenging even for trained dermatologists. Studies comparing the diagnostic performance of a convolutional neural network (CNN) with dermatologists in FSL are lacking. - Methods - A market-approved CNN (Moleanalyzer-Pro, FotoFinder Systems) was used for binary classifications of 100 dermoscopic images of FSL. The same lesions were used in a two-level reader study including 64 dermatologists (level I: dermoscopy only; level II: dermoscopy, clinical close-up images, textual information). Primary endpoints were the CNN's sensitivity and specificity in comparison with the dermatologists' management decisions in level II. Generalizability of the CNN results was tested by using four additional external data sets. - Results - The CNN's sensitivity, specificity and ROC AUC were 96.2% [87.0%-98.9%], 68.8% [54.7%-80.1%] and 0.929 [0.880-0.978], respectively. In level II, the dermatologists' management decisions showed a mean sensitivity of 84.2% [82.2%-86.2%] and specificity of 69.4% [66.0%-72.8%]. When fixing the CNN's specificity at the dermatologists' mean specificity (69.4%), the CNN's sensitivity (96.2% [87.0%-98.9%]) was significantly higher than that of dermatologists (84.2% [82.2%-86.2%]; p < 0.001). Dermatologists of all training levels were outperformed by the CNN (all p < 0.001). In confirmation, the CNN's accuracy (83.0%) was significantly higher than dermatologists' accuracies in level II management decisions (all p < 0.001). The CNN's performance was largely confirmed in three additional external data sets but particularly showed a reduced specificity in one Australian data set including FSL on severely sun-damaged skin. - Conclusions - When applied as an assistant system, the CNN's higher sensitivity at an equivalent specificity may result in an improved early detection of face and scalp skin cancers.
DOI:doi:10.1016/j.ejca.2020.11.034
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.ejca.2020.11.034
 Volltext: https://www.sciencedirect.com/science/article/pii/S095980492031371X
 DOI: https://doi.org/10.1016/j.ejca.2020.11.034
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Actinic keratosis
 Basal cell carcinoma
 Deep learning
 Dermoscopy
 Lentigo maligna
 Melanoma
 Moleanalyzer-pro
 Neural network
 Seborrheic keratosis
 Skin cancer
 Solar lentigo
K10plus-PPN:1750179822
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68706459   QR-Code
zum Seitenanfang