Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Dugourd, Aurélien [VerfasserIn]   i
 Gjerga, Enio [VerfasserIn]   i
 Gabor, Attila [VerfasserIn]   i
 Sáez Rodríguez, Julio [VerfasserIn]   i
 Kuppe, Christoph [VerfasserIn]   i
 Sciacovelli, Marco [VerfasserIn]   i
 Emdal, Kristina B. [VerfasserIn]   i
 Vieira, Vitor [VerfasserIn]   i
 Bekker-Jensen, Dorte B. [VerfasserIn]   i
 Kranz, Jennifer [VerfasserIn]   i
 Bindels, Eric M. J. [VerfasserIn]   i
 Costa, Ana S. H. [VerfasserIn]   i
 Sousa, Abel [VerfasserIn]   i
 Beltrao, Pedro [VerfasserIn]   i
 Rocha, Miguel [VerfasserIn]   i
 Olsen, Jesper V. [VerfasserIn]   i
 Frezza, Christian [VerfasserIn]   i
 Kramann, Rafael [VerfasserIn]   i
Titel:Causal integration of multi-omics data with prior knowledge to generate mechanistic hypotheses
Verf.angabe:Aurelien Dugourd, Christoph Kuppe, Marco Sciacovelli, Enio Gjerga, Attila Gabor, Kristina B. Emdal, Vitor Vieira, Dorte B. Bekker-Jensen, Jennifer Kranz, Eric.M.J. Bindels, Ana S.H. Costa, Abel Sousa, Pedro Beltrao, Miguel Rocha, Jesper V. Olsen, Christian Frezza, Rafael Kramann & Julio Saez-Rodriguez
E-Jahr:2021
Jahr:27 January 2021
Umfang:17 S.
Fussnoten:Gesehen am 05.05.2022
Titel Quelle:Enthalten in: Molecular systems biology
Ort Quelle:[London] : Nature Publishing Group UK, 2005
Jahr Quelle:2021
Band/Heft Quelle:17(2021), 1, Artikel-ID e9730, Seite 1-17
ISSN Quelle:1744-4292
Abstract:Abstract Multi-omics datasets can provide molecular insights beyond the sum of individual omics. Various tools have been recently developed to integrate such datasets, but there are limited strategies to systematically extract mechanistic hypotheses from them. Here, we present COSMOS (Causal Oriented Search of Multi-Omics Space), a method that integrates phosphoproteomics, transcriptomics, and metabolomics datasets. COSMOS combines extensive prior knowledge of signaling, metabolic, and gene regulatory networks with computational methods to estimate activities of transcription factors and kinases as well as network-level causal reasoning. COSMOS provides mechanistic hypotheses for experimental observations across multi-omics datasets. We applied COSMOS to a dataset comprising transcriptomics, phosphoproteomics, and metabolomics data from healthy and cancerous tissue from eleven clear cell renal cell carcinoma (ccRCC) patients. COSMOS was able to capture relevant crosstalks within and between multiple omics layers, such as known ccRCC drug targets. We expect that our freely available method will be broadly useful to extract mechanistic insights from multi-omics studies.
DOI:doi:10.15252/msb.20209730
URL:kostenfrei: Volltext: https://doi.org/10.15252/msb.20209730
 kostenfrei: Volltext: https://www.embopress.org/doi/full/10.15252/msb.20209730
 DOI: https://doi.org/10.15252/msb.20209730
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:causal reasoning
 kidney cancer
 metabolism
 multi-omics
 signaling
K10plus-PPN:1750557266
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68707532   QR-Code
zum Seitenanfang