| Online-Ressource |
Verfasst von: | Felski, Alexander [VerfasserIn]  |
| Beygi, Alireza [VerfasserIn]  |
| Klevansky, Sandra Pamela [VerfasserIn]  |
Titel: | Non-Hermitian extension of the Nambu-Jona-Lasinio model in 3+1 and 1+1 dimensions |
Verf.angabe: | Alexander Felski, Alireza Beygi, and S.P. Klevansky |
E-Jahr: | 2020 |
Jahr: | 2 June 2020 |
Umfang: | 10 S. |
Teil: | volume:101 |
| year:2020 |
| number:11 |
| elocationid:116001 |
| pages:1-10 |
| extent:10 |
Fussnoten: | Gesehen am 18.03.2021 |
Titel Quelle: | Enthalten in: Physical review |
Ort Quelle: | Woodbury, NY : Inst., 2016 |
Jahr Quelle: | 2020 |
Band/Heft Quelle: | 101(2020), 11, Artikel-ID 116001, Seite 1-10 |
ISSN Quelle: | 2470-0029 |
Abstract: | This paper presents a non-Hermitian PT-symmetric extension of the Nambu-Jona-Lasinio (NJL) model of quantum chromodynamics in 3+1 and 1+1 dimensions. In 3+1 dimensions, the SU(2)-symmetric NJL Hamiltonian HNJL=¯ψ(−iγk∂k+m0)ψ−G[(¯ψψ)2+(¯ψiγ5→τψ)2] is extended by the non-Hermitian, PT- and chiral-symmetric bilinear term ig¯ψγ5Bμγμψ; in 1+1 dimensions, where HNJL is a form of the Gross-Neveu model, it is extended by the non-Hermitian PT-symmetric but chiral symmetry breaking term g¯ψγ5ψ. In each case, the gap equation is derived, and the effects of the non-Hermitian terms on the generated mass are studied. We have several findings: in previous calculations for the free Dirac equation modified to include non-Hermitian bilinear terms, contrary to expectation, no real mass spectrum can be obtained in the chiral limit. In these cases, a nonzero bare fermion mass is essential for the realization of PT symmetry in the unbroken regime. Here, in the NJL model, in which four-point interactions are present, we do find real values for the mass spectrum also in the limit of vanishing bare masses in both 3+1 and 1+1 dimensions, at least for certain specific values of the non-Hermitian couplings g. Thus, the four-point interaction overrides the effects leading to PT symmetry breaking for these parameter values. Further, we find that in both cases, in 3+1 and in 1+1 dimensions, the inclusion of a non-Hermitian bilinear term can contribute to the generated mass. In both models, this contribution can be tuned to be small; we thus fix the fermion mass to its value when m0=0 in the absence of the non-Hermitian term, and then determine the value of the coupling required so as to generate a bare fermion mass. Finally, we find that in both cases, a rich phase structure emerges from the gap equation as a function of the coupling strengths. |
DOI: | doi:10.1103/PhysRevD.101.116001 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext ; Verlag: https://doi.org/10.1103/PhysRevD.101.116001 |
| Volltext: https://link.aps.org/doi/10.1103/PhysRevD.101.116001 |
| DOI: https://doi.org/10.1103/PhysRevD.101.116001 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1751692639 |
Verknüpfungen: | → Zeitschrift |
Non-Hermitian extension of the Nambu-Jona-Lasinio model in 3+1 and 1+1 dimensions / Felski, Alexander [VerfasserIn]; 2 June 2020 (Online-Ressource)