Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Knapp, Bettina [VerfasserIn]   i
 Kaderali, Lars [VerfasserIn]   i
Titel:Reconstruction of cellular signal transduction networks using perturbation assays and linear programming
Verf.angabe:Bettina Knapp, Lars Kaderali
E-Jahr:2013
Jahr:July 30, 2013
Umfang:13 S.
Fussnoten:Gesehen am 07.06.2022
Titel Quelle:Enthalten in: PLOS ONE
Ort Quelle:San Francisco, California, US : PLOS, 2006
Jahr Quelle:2013
Band/Heft Quelle:8(2013), 7, Artikel-ID e69220, Seite 1-13
ISSN Quelle:1932-6203
Abstract:Perturbation experiments for example using RNA interference (RNAi) offer an attractive way to elucidate gene function in a high throughput fashion. The placement of hit genes in their functional context and the inference of underlying networks from such data, however, are challenging tasks. One of the problems in network inference is the exponential number of possible network topologies for a given number of genes. Here, we introduce a novel mathematical approach to address this question. We formulate network inference as a linear optimization problem, which can be solved efficiently even for large-scale systems. We use simulated data to evaluate our approach, and show improved performance in particular on larger networks over state-of-the art methods. We achieve increased sensitivity and specificity, as well as a significant reduction in computing time. Furthermore, we show superior performance on noisy data. We then apply our approach to study the intracellular signaling of human primary nave CD4+ T-cells, as well as ErbB signaling in trastuzumab resistant breast cancer cells. In both cases, our approach recovers known interactions and points to additional relevant processes. In ErbB signaling, our results predict an important role of negative and positive feedback in controlling the cell cycle progression.
DOI:doi:10.1371/journal.pone.0069220
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1371/journal.pone.0069220
 Volltext: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069220
 DOI: https://doi.org/10.1371/journal.pone.0069220
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Cyclins
 Flow cytometry
 Genetic networks
 Protein interaction networks
 Signal transduction
 Signaling networks
 Simulation and modeling
 T cells
K10plus-PPN:1752013794
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68714852   QR-Code
zum Seitenanfang