Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Zeilmann, Alexander [VerfasserIn]  |
| Savarino, Fabrizio [VerfasserIn]  |
| Petra, Stefania [VerfasserIn]  |
| Schnörr, Christoph [VerfasserIn]  |
Titel: | Geometric numerical integration of the assignment flow |
Verf.angabe: | Alexander Zeilmann, Fabrizio Savarino, Stefania Petra and Christoph Schnörr |
E-Jahr: | 2020 |
Jahr: | 20 February 2020 |
Umfang: | ? S. |
Teil: | volume:36 |
| year:2020 |
| number:3 |
| elocationid:034003 |
| extent:? |
Fussnoten: | Gesehen am 25.03.2021 |
Titel Quelle: | Enthalten in: Inverse problems |
Ort Quelle: | Bristol [u.a.] : Inst., 1985 |
Jahr Quelle: | 2020 |
Band/Heft Quelle: | 36(2020), 3, Artikel-ID 034003 |
ISSN Quelle: | 1361-6420 |
Abstract: | The assignment flow is a smooth dynamical system that evolves on an elementary statistical manifold and performs contextual data labeling on a graph. We derive and introduce the linear assignment flow that evolves nonlinearly on the manifold, but is governed by a linear ODE on the tangent space. Various numerical schemes adapted to the mathematical structure of these two models are designed and studied, for the geometric numerical integration of both flows: embedded Runge-Kutta-Munthe-Kaas schemes for the nonlinear flow, adaptive Runge-Kutta schemes and exponential integrators for the linear flow. All algorithms are parameter free, except for setting a tolerance value that specifies adaptive step size selection by monitoring the local integration error, or fixing the dimension of the Krylov subspace approximation. These algorithms provide a basis for applying the assignment flow to machine learning scenarios beyond supervised labeling, including unsupervised labeling and learning from controlled assignment flows. |
DOI: | doi:10.1088/1361-6420/ab2772 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext ; Verlag: https://doi.org/10.1088/1361-6420/ab2772 |
| Volltext: https://iopscience.iop.org/article/10.1088/1361-6420/ab2772 |
| DOI: https://doi.org/10.1088/1361-6420/ab2772 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1752408136 |
Verknüpfungen: | → Zeitschrift |
Geometric numerical integration of the assignment flow / Zeilmann, Alexander [VerfasserIn]; 20 February 2020 (Online-Ressource)
68716870