Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Dyrby, Tim B. [VerfasserIn]   i
 Rostrup, Egill [VerfasserIn]   i
 Baaré, William F. C. [VerfasserIn]   i
 Straaten, Elisabeth C. W. van [VerfasserIn]   i
 Barkhof, Frederik [VerfasserIn]   i
 Vrenken, Hugo [VerfasserIn]   i
 Ropele, Stefan [VerfasserIn]   i
 Schmidt, Reinhold [VerfasserIn]   i
 Erkinjuntti, Timo [VerfasserIn]   i
 Wahlund, Lars-Olof [VerfasserIn]   i
 Pantoni, Leonardo [VerfasserIn]   i
 Inzitari, Domenico [VerfasserIn]   i
 Paulson, Olaf B. [VerfasserIn]   i
 Hansen, Lars Kai [VerfasserIn]   i
 Waldemar, Gunhild [VerfasserIn]   i
 Hennerici, Michael G. [VerfasserIn]   i
 Blahak, Christian [VerfasserIn]   i
 Bäzner, Hansjörg [VerfasserIn]   i
Titel:Segmentation of age-related white matter changes in a clinical multi-center study
Verf.angabe:Tim B. Dyrby, Egill Rostrup, William F. C. Baaré, Elisabeth C. W. van Straaten, Frederik Barkhof, Hugo Vrenken, Stefan Ropele, Reinhold Schmidt, Timo Erkinjuntti, Lars-Olof Wahlund, Leonardo Pantoni, Domenico Inzitari, Olaf B. Paulson, Lars Kai Hansen, and Gunhild Waldemar on behalf of the LADIS study group
E-Jahr:2008
Jahr:29 February 2008
Umfang:11 S.
Fussnoten:List of participating centers and personnel: Timo Erkinjuntti, MD, PhD, Michael Hennerici, MD, Christian Blahak, MD, Hansjorg Baezner, MD und weitere ; Gesehen am 26.03.2021
Titel Quelle:Enthalten in: NeuroImage
Ort Quelle:Orlando, Fla. : Academic Press, 1992
Jahr Quelle:2008
Band/Heft Quelle:41(2008), 2, Seite 335-345
ISSN Quelle:1095-9572
Abstract:Age-related white matter changes (WMC) are thought to be a marker of vascular pathology, and have been associated with motor and cognitive deficits. In the present study, an optimized artificial neural network was used as an automatic segmentation method to produce probabilistic maps of WMC in a clinical multi-center study. The neural network uses information from T1- and T2-weighted and fluid attenuation inversion recovery (FLAIR) magnetic resonance (MR) scans, neighboring voxels and spatial location. Generalizability of the neural network was optimized by including the Optimal Brain Damage (OBD) pruning method in the training stage. Six optimized neural networks were produced to investigate the impact of different input information on WMC segmentation. The automatic segmentation method was applied to MR scans of 362 non-demented elderly subjects from 11 centers in the European multi-center study Leukoaraiosis And Disability (LADIS). Semi-manually delineated WMC were used for validating the segmentation produced by the neural networks. The neural network segmentation demonstrated high consistency between subjects and centers, making it a promising technique for large studies. For WMC volumes less than 10 ml, an increasing discrepancy between semi-manual and neural network segmentation was observed using the similarity index (SI) measure. The use of all three image modalities significantly improved cross-center generalizability compared to neural networks using the FLAIR image only. Expert knowledge not available to the neural networks was a minor source of discrepancy, while variation in MR scan quality constituted the largest source of error.
DOI:doi:10.1016/j.neuroimage.2008.02.024
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.neuroimage.2008.02.024
 Volltext: https://www.sciencedirect.com/science/article/pii/S1053811908001651
 DOI: https://doi.org/10.1016/j.neuroimage.2008.02.024
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Artificial neural network
 Automatic segmentation
 Disability
 Elderly
 LADIS study
 Leukoaraiosis
 MRI
 White matter lesions
K10plus-PPN:1752577884
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68717237   QR-Code
zum Seitenanfang