Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Davydov, Denis [VerfasserIn]   i
 Pelteret, Jean-Paul [VerfasserIn]   i
 Arndt, Daniel [VerfasserIn]   i
 Kronbichler, Martin [VerfasserIn]   i
 Steinmann, Paul [VerfasserIn]   i
Titel:A matrix-free approach for finite-strain hyperelastic problems using geometric multigrid
Verf.angabe:Denis Davydov, Jean-Paul Pelteret, Daniel Arndt, Martin Kronbichler, Paul Steinmann
E-Jahr:2020
Jahr:27 February 2020
Umfang:22 S.
Teil:volume:121
 year:2020
 number:13
 pages:2874-2895
 extent:22
Fussnoten:Gesehen am 29.03.2021
Titel Quelle:Enthalten in: International journal for numerical methods in engineering
Ort Quelle:Chichester [u.a.] : Wiley, 1969
Jahr Quelle:2020
Band/Heft Quelle:121(2020), 13, Seite 2874-2895
ISSN Quelle:1097-0207
Abstract:This work investigates matrix-free algorithms for problems in quasi-static finite-strain hyperelasticity. Iterative solvers with matrix-free operator evaluation have emerged as an attractive alternative to sparse matrices in the fluid dynamics and wave propagation communities because they significantly reduce the memory traffic, the limiting factor in classical finite element solvers. Specifically, we study different matrix-free realizations of the finite element tangent operator and determine whether generalized methods of incorporating complex constitutive behavior might be feasible. In order to improve the convergence behavior of iterative solvers, we also propose a method by which to construct level tangent operators and employ them to define a geometric multigrid preconditioner. The performance of the matrix-free operator and the geometric multigrid preconditioner is compared to the matrix-based implementation with an algebraic multigrid (AMG) preconditioner on a single node for a representative numerical example of a heterogeneous hyperelastic material in two and three dimensions. We find that matrix-free methods for finite-strain solid mechanics are very promising, outperforming linear matrix-based schemes by two to five times, and that it is possible to develop numerically efficient implementations that are independent of the hyperelastic constitutive law.
DOI:doi:10.1002/nme.6336
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/https://doi.org/10.1002/nme.6336
 Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6336
 DOI: https://doi.org/10.1002/nme.6336
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:adaptive finite-element method
 finite-strain
 geometric multigrid
 hyperelasticity
 matrix-free
K10plus-PPN:175265000X
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68717660   QR-Code
zum Seitenanfang