Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Thomas, Minta [VerfasserIn]   i
 Sakoda, Lori C. [VerfasserIn]   i
 Hoffmeister, Michael [VerfasserIn]   i
 Rosenthal, Elisabeth A. [VerfasserIn]   i
 Lee, Jeffrey K. [VerfasserIn]   i
 van Duijnhoven, Franzel J. B. [VerfasserIn]   i
 Platz, Elizabeth A. [VerfasserIn]   i
 Wu, Anna H. [VerfasserIn]   i
 Dampier, Christopher H. [VerfasserIn]   i
 La Chapelle, Albert de [VerfasserIn]   i
 Wolk, Alicja [VerfasserIn]   i
 Joshi, Amit D. [VerfasserIn]   i
 Burnett-Hartman, Andrea [VerfasserIn]   i
 Gsur, Andrea [VerfasserIn]   i
 Lindblom, Annika [VerfasserIn]   i
 Castells, Antoni [VerfasserIn]   i
 Win, Aung Ko [VerfasserIn]   i
 Namjou, Bahram [VerfasserIn]   i
 Van Guelpen, Bethany [VerfasserIn]   i
 Tangen, Catherine M. [VerfasserIn]   i
 He, Qianchuan [VerfasserIn]   i
 Li, Christopher I. [VerfasserIn]   i
 Schafmayer, Clemens [VerfasserIn]   i
 Joshu, Corinne E. [VerfasserIn]   i
 Ulrich, Cornelia [VerfasserIn]   i
 Bishop, D. Timothy [VerfasserIn]   i
 Buchanan, Daniel D. [VerfasserIn]   i
 Schaid, Daniel [VerfasserIn]   i
 Drew, David A. [VerfasserIn]   i
 Müller, David Christian [VerfasserIn]   i
 Duggan, David [VerfasserIn]   i
 Crosslin, David R. [VerfasserIn]   i
 Albanes, Demetrius [VerfasserIn]   i
 Giovannucci, Edward L. [VerfasserIn]   i
 Larson, Eric [VerfasserIn]   i
 Qu, Flora [VerfasserIn]   i
 Mentch, Frank [VerfasserIn]   i
 Giles, Graham G. [VerfasserIn]   i
 Hákon Hákonarson [VerfasserIn]   i
 Hampel, Heather [VerfasserIn]   i
 Stanaway, Ian B. [VerfasserIn]   i
 Figueiredo, Jane C. [VerfasserIn]   i
 Huyghe, Jeroen R. [VerfasserIn]   i
 Minnier, Jessica [VerfasserIn]   i
 Chang-Claude, Jenny [VerfasserIn]   i
 Hampe, Jochen [VerfasserIn]   i
 Harley, John B. [VerfasserIn]   i
 Visvanathan, Kala [VerfasserIn]   i
 Curtis, Keith R. [VerfasserIn]   i
 Offit, Kenneth [VerfasserIn]   i
 Li, Li [VerfasserIn]   i
 Le Marchand, Loic [VerfasserIn]   i
 Vodickova, Ludmila [VerfasserIn]   i
 Gunter, Marc J.R. [VerfasserIn]   i
 Jenkins, Mark A. [VerfasserIn]   i
 Slattery, Martha L. [VerfasserIn]   i
 Lemire, Mathieu [VerfasserIn]   i
 Woods, Michael O. [VerfasserIn]   i
 Song, Mingyang [VerfasserIn]   i
 Murphy, Neil [VerfasserIn]   i
 Lindor, Noralane M. [VerfasserIn]   i
 Dikilitas, Ozan [VerfasserIn]   i
 Pharoah, Paul D. P. [VerfasserIn]   i
 Campbell, Peter T. [VerfasserIn]   i
 Newcomb, Polly A. [VerfasserIn]   i
 Milne, Roger L. [VerfasserIn]   i
 MacInnis, Robert J. [VerfasserIn]   i
 Castellví-Bel, Sergi [VerfasserIn]   i
 Ogino, Shuji [VerfasserIn]   i
 Berndt, Sonja I. [VerfasserIn]   i
 Bézieau, Stéphane [VerfasserIn]   i
 Thibodeau, Stephen N. [VerfasserIn]   i
 Gallinger, Steven J. [VerfasserIn]   i
 Zaidi, Syed H. [VerfasserIn]   i
 Harrison, Tabitha A. [VerfasserIn]   i
 Keku, Temitope O. [VerfasserIn]   i
 Hudson, Thomas J. [VerfasserIn]   i
 Vymetalkova, Veronika [VerfasserIn]   i
 Moreno, Victor [VerfasserIn]   i
 Martín, Vicente [VerfasserIn]   i
 Arndt, Volker [VerfasserIn]   i
 Wei, Wei-Qi [VerfasserIn]   i
 Chung, Wendy [VerfasserIn]   i
 Su, Yu-Ru [VerfasserIn]   i
 Hayes, Richard B. [VerfasserIn]   i
 White, Emily [VerfasserIn]   i
 Vodicka, Pavel [VerfasserIn]   i
 Casey, Graham [VerfasserIn]   i
 Gruber, Stephen B. [VerfasserIn]   i
 Schoen, Robert E. [VerfasserIn]   i
 Chan, Andrew T. [VerfasserIn]   i
 Potter, John D. [VerfasserIn]   i
 Brenner, Hermann [VerfasserIn]   i
 Jarvik, Gail P. [VerfasserIn]   i
 Corley, Douglas A. [VerfasserIn]   i
 Peters, Ulrike [VerfasserIn]   i
 Hsu, Li [VerfasserIn]   i
Titel:Genome-wide modeling of polygenic risk score in colorectal cancer risk
Verf.angabe:Minta Thomas, Lori C. Sakoda, Michael Hoffmeister, Elisabeth A. Rosenthal, Jeffrey K. Lee, Franzel J.B. van Duijnhoven, Elizabeth A. Platz, Anna H. Wu, Christopher H. Dampier, Albert de la Chapelle, Alicja Wolk, Amit D. Joshi, Andrea Burnett-Hartman, Andrea Gsur, Annika Lindblom, Antoni Castells, Aung Ko Win, Bahram Namjou,, Bethany Van Guelpen, Catherine M. Tangen, Qianchuan He, Christopher I. Li, Clemens Schafmayer, Corinne E. Joshu, Cornelia M. Ulrich, D. Timothy Bishop, Daniel D. Buchanan, Daniel Schaid, David A. Drew, David C. Muller, David Duggan, David R. Crosslin, Demetrius Albanes, Edward L. Giovannucci,, Eric Larson, Flora Qu, Frank Mentch, Graham G. Giles,, Hakon Hakonarson, Heather Hampel, Ian B. Stanaway, Jane C. Figueiredo, Jeroen R. Huyghe, Jessica Minnier, Jenny Chang-Claude, Jochen Hampe, John B. Harley,, Kala Visvanathan, Keith R. Curtis, Kenneth Offit, Li Li, Loic Le Marchand, Ludmila Vodickova,, Marc J. Gunter, Mark A. Jenkins, Martha L. Slattery, Mathieu Lemire, Michael O. Woods, Mingyang Song,, Neil Murphy, Noralane M. Lindor, Ozan Dikilitas, Paul D.P. Pharoah, Peter T. Campbell, Polly A. Newcomb, Roger L. Milne, Robert J. MacInnis, Sergi Castellvı´-Bel, Shuji Ogino, Sonja I. Berndt, Ste´phane Be´zieau, Stephen N. Thibodeau, Steven J. Gallinger, Syed H. Zaidi, Tabitha A. Harrison, Temitope O. Keku, Thomas J. Hudson, Veronika Vymetalkova, Victor Moreno, Vicente Martı´n, Volker Arndt, Wei-Qi Wei, Wendy Chung, Yu-Ru Su, Richard B. Hayes, Emily White, Pavel Vodicka, Graham Casey, Stephen B. Gruber, Robert E. Schoen, Andrew T. Chan, John D. Potter, Hermann Brenner, Gail P. Jarvik, Douglas A. Corley, Ulrike Peters, and Li Hsu
E-Jahr:2020
Jahr:3 September 2020
Umfang:13 S.
Teil:volume:107
 year:2020
 number:3
 pages:432-444
 extent:13
Fussnoten:Gesehen am 30.03.2021
Titel Quelle:Enthalten in: The American journal of human genetics
Ort Quelle:New York, NY [u.a.] : Cell Press, 1949
Jahr Quelle:2020
Band/Heft Quelle:107(2020), 3, Seite 432-444
ISSN Quelle:1537-6605
Abstract:Accurate colorectal cancer (CRC) risk prediction models are critical for identifying individuals at low and high risk of developing CRC, as they can then be offered targeted screening and interventions to address their risks of developing disease (if they are in a high-risk group) and avoid unnecessary screening and interventions (if they are in a low-risk group). As it is likely that thousands of genetic variants contribute to CRC risk, it is clinically important to investigate whether these genetic variants can be used jointly for CRC risk prediction. In this paper, we derived and compared different approaches to generating predictive polygenic risk scores (PRS) from genome-wide association studies (GWASs) including 55,105 CRC-affected case subjects and 65,079 control subjects of European ancestry. We built the PRS in three ways, using (1) 140 previously identified and validated CRC loci; (2) SNP selection based on linkage disequilibrium (LD) clumping followed by machine-learning approaches; and (3) LDpred, a Bayesian approach for genome-wide risk prediction. We tested the PRS in an independent cohort of 101,987 individuals with 1,699 CRC-affected case subjects. The discriminatory accuracy, calculated by the age- and sex-adjusted area under the receiver operating characteristics curve (AUC), was highest for the LDpred-derived PRS (AUC = 0.654) including nearly 1.2 M genetic variants (the proportion of causal genetic variants for CRC assumed to be 0.003), whereas the PRS of the 140 known variants identified from GWASs had the lowest AUC (AUC = 0.629). Based on the LDpred-derived PRS, we are able to identify 30% of individuals without a family history as having risk for CRC similar to those with a family history of CRC, whereas the PRS based on known GWAS variants identified only top 10% as having a similar relative risk. About 90% of these individuals have no family history and would have been considered average risk under current screening guidelines, but might benefit from earlier screening. The developed PRS offers a way for risk-stratified CRC screening and other targeted interventions.
DOI:doi:10.1016/j.ajhg.2020.07.006
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1016/j.ajhg.2020.07.006
 Volltext: https://www.sciencedirect.com/science/article/pii/S0002929720302366
 DOI: https://doi.org/10.1016/j.ajhg.2020.07.006
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:cancer risk prediction
 colorectal cancer
 machine learning
 polygenic risk score
K10plus-PPN:1752774523
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68718206   QR-Code
zum Seitenanfang