Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Vaiani, Lorenzo [VerfasserIn]   i
 Migliorini, E. [VerfasserIn]   i
 Cavalcanti-Adam, Elisabetta A. [VerfasserIn]   i
 Uva, A. E. [VerfasserIn]   i
 Fiorentino, M. [VerfasserIn]   i
 Gattullo, M. [VerfasserIn]   i
 Manghisi, V. M. [VerfasserIn]   i
 Boccaccio, A. [VerfasserIn]   i
Titel:Coarse-grained elastic network modelling
Titelzusatz:a fast and stable numerical tool to characterize mesenchymal stem cells subjected to AFM nanoindentation measurements
Verf.angabe:L. Vaiani, E. Migliorini, E.A. Cavalcanti-Adam, A.E. Uva, M. Fiorentino, M. Gattullo, V.M. Manghisi, A. Boccaccio
E-Jahr:2021
Jahr:7 January 2021
Umfang:17 S.
Teil:volume:121
 year:2021
 month:02
 elocationid:111860
 pages:1-17
 extent:17
Fussnoten:Gesehen am 31.03.2021
Titel Quelle:Enthalten in: Materials science and engineering / C
Ort Quelle:Amsterdam : Elsevier, 1993
Jahr Quelle:2021
Band/Heft Quelle:121(2021) vom: Feb., Artikel-ID 111860, Seite 1-17
ISSN Quelle:1873-0191
Abstract:The knowledge of the mechanical properties is the starting point to study the mechanobiology of mesenchymal stem cells and to understand the relationships linking biophysical stimuli to the cellular differentiation process. In experimental biology, Atomic Force Microscopy (AFM) is a common technique for measuring these mechanical properties. In this paper we present an alternative approach for extracting common mechanical parameters, such as the Young's modulus of cell components, starting from AFM nanoindentation measurements conducted on human mesenchymal stem cells. In a virtual environment, a geometrical model of a stem cell was converted in a highly deformable Coarse-Grained Elastic Network Model (CG-ENM) to reproduce the real AFM experiment and retrieve the related force-indentation curve. An ad-hoc optimization algorithm perturbed the local stiffness values of the springs, subdivided in several functional regions, until the computed force-indentation curve replicated the experimental one. After this curve matching, the extraction of global Young's moduli was performed for different stem cell samples. The algorithm was capable to distinguish the material properties of different subcellular components such as the cell cortex and the cytoskeleton. The numerical results predicted with the elastic network model were then compared to those obtained from hertzian contact theory and Finite Element Method (FEM) for the same case studies, showing an optimal agreement and a highly reduced computational cost. The proposed simulation flow seems to be an accurate, fast and stable method for understanding the mechanical behavior of soft biological materials, even for subcellular levels of detail. Moreover, the elastic network modelling allows shortening the computational times to approximately 33% of the time required by a traditional FEM simulation performed using elements with size comparable to that of springs.
DOI:doi:10.1016/j.msec.2020.111860
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1016/j.msec.2020.111860
 Volltext: https://www.sciencedirect.com/science/article/pii/S0928493120337796
 DOI: https://doi.org/10.1016/j.msec.2020.111860
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Atomic force microscopy
 Cell material characterization
 Elastic network model
 Meshless methods
K10plus-PPN:1752983076
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68718849   QR-Code
zum Seitenanfang