Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Dimitriadis, Timo [VerfasserIn]   i
 Gneiting, Tilmann [VerfasserIn]   i
 Jordan, Alexander I. [VerfasserIn]   i
Titel:Stable reliability diagrams for probabilistic classifiers
Verf.angabe:Timo Dimitriadis, Tilmann Gneiting, and Alexander I. Jordan
E-Jahr:2021
Jahr:February 17, 2021
Umfang:10 S.
Teil:volume:118
 year:2021
 number:8
 elocationid:e2016191118
 pages:1-10
 extent:10
Fussnoten:Gesehen am 07.04.2021
Titel Quelle:Enthalten in: National Academy of Sciences (Washington, DC)Proceedings of the National Academy of Sciences of the United States of America
Ort Quelle:Washington, DC : National Acad. of Sciences, 1915
Jahr Quelle:2021
Band/Heft Quelle:118(2021), 8, Artikel-ID e2016191118, Seite 1-10
ISSN Quelle:1091-6490
Abstract:A probability forecast or probabilistic classifier is reliable or calibrated if the predicted probabilities are matched by ex post observed frequencies, as examined visually in reliability diagrams. The classical binning and counting approach to plotting reliability diagrams has been hampered by a lack of stability under unavoidable, ad hoc implementation decisions. Here, we introduce the CORP approach, which generates provably statistically consistent, optimally binned, and reproducible reliability diagrams in an automated way. CORP is based on nonparametric isotonic regression and implemented via the pool-adjacent-violators (PAV) algorithm—essentially, the CORP reliability diagram shows the graph of the PAV-(re)calibrated forecast probabilities. The CORP approach allows for uncertainty quantification via either resampling techniques or asymptotic theory, furnishes a numerical measure of miscalibration, and provides a CORP-based Brier-score decomposition that generalizes to any proper scoring rule. We anticipate that judicious uses of the PAV algorithm yield improved tools for diagnostics and inference for a very wide range of statistical and machine learning methods.
DOI:doi:10.1073/pnas.2016191118
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1073/pnas.2016191118
 Volltext: https://www.pnas.org/content/118/8/e2016191118
 DOI: https://doi.org/10.1073/pnas.2016191118
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:calibration
 discrimination ability
 probability forecast
 score decomposition
 weather prediction
K10plus-PPN:1753154731
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68720167   QR-Code
zum Seitenanfang