Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kayvanpour, Elham [VerfasserIn]   i
 Gi, Weng-Tein [VerfasserIn]   i
 Sedaghat-Hamedani, Farbod [VerfasserIn]   i
 Lehmann, David Hermann [VerfasserIn]   i
 Frese, Karen S. [VerfasserIn]   i
 Haas, Jan [VerfasserIn]   i
 Tappu, Rewati [VerfasserIn]   i
 Shirvani-Samani, Omid [VerfasserIn]   i
 Nietsch, Rouven [VerfasserIn]   i
 Kahraman, Mustafa [VerfasserIn]   i
 Fehlmann, Tobias [VerfasserIn]   i
 Müller-Hennessen, Matthias [VerfasserIn]   i
 Weis, Tanja [VerfasserIn]   i
 Giannitsis, Evangelos [VerfasserIn]   i
 Niederdränk, Torsten [VerfasserIn]   i
 Keller, Andreas [VerfasserIn]   i
 Katus, Hugo [VerfasserIn]   i
 Meder, Benjamin [VerfasserIn]   i
Titel:microRNA neural networks improve diagnosis of acute coronary syndrome (ACS)
Verf.angabe:Elham Kayvanpour, Weng-Tein Gi, Farbod Sedaghat-Hamedani, David H. Lehmann, Karen S. Frese, Jan Haas, Rewati Tappu, Omid Shirvani Samani, Rouven Nietsch, Mustafa Kahraman, Tobias Fehlmann, Matthias Müller-Hennessen, Tanja Weis, Evangelos Giannitsis, Torsten Niederdränk, Andreas Keller, Hugo A. Katus, Benjamin Meder
Jahr:2021
Jahr des Originals:2020
Umfang:8 S.
Fussnoten:Available online 17 April 2020 ; Gesehen am 06.04.2021
Titel Quelle:Enthalten in: Journal of molecular and cellular cardiology
Ort Quelle:New York, NY [u.a.] : Elsevier, 1970
Jahr Quelle:2021
Band/Heft Quelle:151(2021) vom: Feb., Seite 155-162
ISSN Quelle:1095-8584
Abstract:Background - Cardiac troponins are the preferred biomarkers of acute myocardial infarction. Despite superior sensitivity, serial testing of Troponins to identify patients suffering acute coronary syndromes is still required in many cases to overcome limited specificity. Moreover, unstable angina pectoris relies on reported symptoms in the troponin-negative group. In this study, we investigated genome-wide miRNA levels in a prospective cohort of patients with clinically suspected ACS and determined their diagnostic value by applying an in silico neural network. - Methods - PAXgene blood and serum samples were drawn and hsTnT was measured in patients at initial presentation to our Chest-Pain Unit. After clinical and diagnostic workup, patients were adjudicated by senior cardiologists in duty to their final diagnosis: STEMI, NSTEMI, unstable angina pectoris and non-ACS patients. ACS patients and a cohort of healthy controls underwent deep transcriptome sequencing. Machine learning was implemented to construct diagnostic miRNA classifiers. - Results - We developed a neural network model which incorporates 34 validated ACS miRNAs, showing excellent classification results. By further developing additional machine learning models and selecting the best miRNAs, we achieved an accuracy of 0.96 (95% CI 0.96-0.97), sensitivity of 0.95, specificity of 0.96 and AUC of 0.99. The one-point hsTnT value reached an accuracy of 0.89, sensitivity of 0.82, specificity of 0.96, and AUC of 0.96. - Conclusions - Here we show the concept of neural network based biomarkers for ACS. This approach also opens the possibility to include multi-modal data points to further increase precision and perform classification of other ACS differential diagnoses.
DOI:doi:10.1016/j.yjmcc.2020.04.014
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1016/j.yjmcc.2020.04.014
 Volltext: https://www.sciencedirect.com/science/article/pii/S0022282820300973
 DOI: https://doi.org/10.1016/j.yjmcc.2020.04.014
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Acute coronary syndrome
 Deep learning
 High-sensitive troponin
 microRNA
K10plus-PPN:1753215323
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68720269   QR-Code
zum Seitenanfang