Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Johnson, Jarrett L. [VerfasserIn]   i
 Whalen, Daniel J. [VerfasserIn]   i
 Even, Wesley [VerfasserIn]   i
 Fryer, Chris L. [VerfasserIn]   i
 Heger, Alex [VerfasserIn]   i
 Smidt, Joseph [VerfasserIn]   i
 Chen, Ke-Jung [VerfasserIn]   i
Titel:The biggest explosions in the universe
Verf.angabe:Jarrett L. Johnson, Daniel J. Whalen, Wesley Even, Chris L. Fryer, Alex Heger, Joseph Smidt, and Ke-Jung Chen
E-Jahr:2013
Jahr:2013 September 12
Umfang:8 S.
Teil:volume:775
 year:2013
 number:2
 elocationid:107
 pages:1-8
 extent:8
Fussnoten:Gesehen am 08.04.2021
Titel Quelle:Enthalten in: The astrophysical journal / 1
Ort Quelle:London : Institute of Physics Publ., 1996
Jahr Quelle:2013
Band/Heft Quelle:775(2013), 2, Artikel-ID 107, Seite 1-8
ISSN Quelle:1538-4357
Abstract:Supermassive primordial stars are expected to form in a small fraction of massive protogalaxies in the early universe, and are generally conceived of as the progenitors of the seeds of supermassive black holes (BHs). Supermassive stars with masses of ∼55, 000 M☉, however, have been found to explode and completely disrupt in a supernova (SN) with an energy of up to ∼1055 erg instead of collapsing to a BH. Such events, ∼10, 000 times more energetic than typical SNe today, would be among the biggest explosions in the history of the universe. Here we present a simulation of such a SN in two stages. Using the RAGE radiation hydrodynamics code, we first evolve the explosion from an early stage through the breakout of the shock from the surface of the star until the blast wave has propagated out to several parsecs from the explosion site, which lies deep within an atomic cooling dark matter (DM) halo at z ≃ 15. Then, using the GADGET cosmological hydrodynamics code, we evolve the explosion out to several kiloparsecs from the explosion site, far into the low-density intergalactic medium. The host DM halo, with a total mass of 4 × 107 M☉, much more massive than typical primordial star-forming halos, is completely evacuated of high-density gas after ≲ 10 Myr, although dense metal-enriched gas recollapses into the halo, where it will likely form second-generation stars with metallicities of ≃ 0.05 Z☉ after ≳ 70 Myr. The chemical signature of supermassive star explosions may be found in such long-lived second-generation stars today.
DOI:doi:10.1088/0004-637X/775/2/107
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1088/0004-637X/775/2/107
 DOI: https://doi.org/10.1088/0004-637X/775/2/107
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:175334106X
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68721280   QR-Code
zum Seitenanfang