Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Schündeln, Michael Maria [VerfasserIn]   i
 Lange, Toni [VerfasserIn]   i
 Knoll, Maximilian [VerfasserIn]   i
 Spix, Claudia [VerfasserIn]   i
 Brenner, Hermann [VerfasserIn]   i
 Bozorgmehr, Kayvan [VerfasserIn]   i
 Stock, Christian [VerfasserIn]   i
Titel:Statistical methods for spatial cluster detection in childhood cancer incidence
Titelzusatz:a simulation study
Verf.angabe:Michael M. Schündeln, Toni Lange, Maximilian Knoll, Claudia Spix, Hermann Brenner, Kayvan Bozorgmehr, Christian Stock
Jahr:2021
Umfang:9 S.
Teil:volume:70
 year:2021
 elocationid:101873
 pages:1-9
 extent:9
Fussnoten:Available online 24 December 2020 ; Gesehen am 27.08.2021
Titel Quelle:Enthalten in: Cancer epidemiology
Ort Quelle:Amsterdam [u.a.] : Elsevier, 2009
Jahr Quelle:2021
Band/Heft Quelle:70(2021), Artikel-ID 101873, Seite 1-9
ISSN Quelle:1877-783X
Abstract:Background and objective - The potential existence of spatial clusters in childhood cancer incidence is a debated topic. Identification of such clusters may help to better understand etiology and develop preventive strategies. We evaluated widely used statistical approaches to cluster detection in this context. - Methods - Incidence of newly diagnosed childhood cancer (140/1,000,000 children under 15 years) and nephroblastoma (7/1,000,000) was simulated. Clusters of defined size (1-50) were randomly assembled on the district level in Germany. Each cluster was simulated with different relative risk levels (1-100). For each combination 2000 iterations were done. Simulated data was then analyzed by three local clustering tests: Besag-Newell method, spatial scan statistic and Bayesian Besag-York-Mollié with Integrated Nested Laplace Approximation approach. The operating characteristics (sensitivity, specificity, predictive values, power and correct classification) of all three methods were systematically described. - Results - Performance varied considerably within and between methods, depending on the simulated setting. Sensitivity of all methods was positively associated with increasing size, incidence and RR of the high-risk area. Besag-York-Mollié showed highest specificity for minimally increased RR in most scenarios. The performance of all methods was lower in the nephroblastoma scenario compared with the scenario including all cancer cases. - Conclusion - This study illustrates the challenge to make reliable inferences on the existence of spatial clusters based on single statistical approaches in childhood cancer. Application of multiple methods, ideally with known operating characteristics, and a critical discussion of the joint evidence seems recommendable when aiming to identify high-risk clusters.
DOI:doi:10.1016/j.canep.2020.101873
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1016/j.canep.2020.101873
 Volltext: https://www.sciencedirect.com/science/article/pii/S1877782120302071
 DOI: https://doi.org/10.1016/j.canep.2020.101873
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Bayesian
 Besag York Mollié
 Besag-Newell
 Childhood cancer
 Spatial cluster
 Spatial scan statistic
K10plus-PPN:1753573041
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68721809   QR-Code
zum Seitenanfang