Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Winkler, Julia K. [VerfasserIn]   i
 Kommoss, Katharina [VerfasserIn]   i
 Müller-Christmann, Christine [VerfasserIn]   i
 Toberer, Ferdinand [VerfasserIn]   i
 Enk, Alexander [VerfasserIn]   i
 Abassi, Mohamed S. [VerfasserIn]   i
 Fuchs, Tobias [VerfasserIn]   i
 Hänßle, Holger [VerfasserIn]   i
Titel:Association between different scale bars in dermoscopic images and diagnostic performance of a market-approved deep learning convolutional neural network for melanoma recognition
Verf.angabe:Julia K. Winkler, Katharina Sies, Christine Fink, Ferdinand Toberer, Alexander Enk, Mohamed S. Abassi, Tobias Fuchs, Holger A. Haenssle
E-Jahr:2021
Jahr:16 January 2021
Umfang:9 S.
Fussnoten:Gesehen am 28.07.2021
Titel Quelle:Enthalten in: European journal of cancer
Ort Quelle:Amsterdam [u.a.] : Elsevier, 1992
Jahr Quelle:2021
Band/Heft Quelle:145(2021), Seite 146-154
ISSN Quelle:1879-0852
Abstract:Background - Studies systematically unravelling possible causes for false diagnoses of deep learning convolutional neural networks (CNNs) are scarce, yet needed before broader application. - Objectives - The objective of the study was to investigate whether scale bars in dermoscopic images are associated with the diagnostic accuracy of a market-approved CNN. - Methods - This cross-sectional analysis applied a CNN trained with more than 150,000 images (Moleanalyzer-pro®, FotoFinder Systems Inc., Bad Birnbach, Germany) to investigate seven dermoscopic image sets depicting the same 130 melanocytic lesions (107 nevi, 23 melanomas) without or with digitally superimposed scale bars of different manufacturers. Sensitivity, specificity and area under the curve (AUC) of receiver operating characteristics (ROC) for the CNN's binary classification of images with or without superimposed scale bars were assessed. - Results - Six dermoscopic image sets with different scale bars and one control set without scale bars (overall 910 images) were submitted to CNN analysis. In images without scale bars, the CNN attained a sensitivity [95% confidence interval] of 87.0% [67.9%-95.5%] and a specificity of 87.9% [80.3%-92.8%]. ROC AUC was 0.953 [0.914-0.992]. Scale bars were not associated with significant changes in sensitivity (range 87%-95.7%, all p ≥ 1.0). However, four scale bars induced a decrease of the CNN's specificity (range 0%-43.9%, all p < 0.001). Moreover, ROC AUC was significantly reduced by two scale bars (range 0.520-0.848, both p ≤ 0.042). - Conclusions - Superimposed scale bars in dermoscopic images may impair the CNN's diagnostic accuracy, mostly by increasing the rate of the false-positive diagnoses. We recommend avoiding scale bars in images intended for CNN analysis unless specific measures counteracting effects are implemented. - Clinical trial number - This study was registered at the German Clinical Trial Register (DRKS-Study-ID: DRKS00013570; URL: https://www.drks.de/drks_web/).
DOI:doi:10.1016/j.ejca.2020.12.010
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.ejca.2020.12.010
 Volltext: https://www.sciencedirect.com/science/article/pii/S0959804920314209
 DOI: https://doi.org/10.1016/j.ejca.2020.12.010
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Convolutional neural network
 Deep learning
 Dermoscopy
 Melanoma
 Nevus
 Scale bar
K10plus-PPN:1754706029
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68723490   QR-Code
zum Seitenanfang