Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Vallejo Orti, Miguel [VerfasserIn]   i
 Winiwarter, Lukas [VerfasserIn]   i
 Corral-Pazos-de-Provens, Eva [VerfasserIn]   i
 Williams, Jack G. [VerfasserIn]   i
 Bubenzer, Olaf [VerfasserIn]   i
 Höfle, Bernhard [VerfasserIn]   i
Titel:Use of TanDEM-X and Sentinel products to derive gully activity maps in Kunene Region (Namibia) based on automatic iterative random forest approach
Verf.angabe:Miguel Vallejo Orti, Lukas Winiwarter, Eva Corral-Pazos-de-Provens, Jack G. Williams, Olaf Bubenzer, Bernhard Höfle
E-Jahr:2021
Jahr:24 November 2020
Jahr des Originals:2020
Umfang:17 S.
Fussnoten:Gesehen am 27.04.2021
Titel Quelle:Enthalten in: Institute of Electrical and Electronics EngineersIEEE journal of selected topics in applied earth observations and remote sensing
Ort Quelle:New York, NY : IEEE, 2008
Jahr Quelle:2021
Band/Heft Quelle:14(2021), Seite 607-623
ISSN Quelle:2151-1535
Abstract:Gullies are landforms with specific patterns of shape, topography, hydrology, vegetation, and soil characteristics. Remote sensing products (TanDEM-X, Sentinel-1, and Sentinel-2) serve as inputs into an iterative algorithm, initialized using a micro-mapping simulation as training data, to map gullies in the northwestern of Namibia. A Random Forest Classifier examines pixels with similar characteristics in a pool of unlabeled data, and gully objects are detected where high densities of gully pixels are enclosed by an alpha shape. Gully objects are used in subsequent iterations following a mechanism where the algorithm uses the most reliable pixels as gully training samples. The gully class continuously grows until an optimal scenario in terms of accuracy is achieved. Results are benchmarked with manually tagged gullies (initial gully labeled area <; 0.3% of the total study area) in two different watersheds (408 and 302 km2, respectively) yielding total accuracies of >98%, with 60% in the gully class, Cohen Kappa >0.5, Matthews Correlation Coefficient >0.5, and receiver operating characteristic Area Under the Curve >0.89. Hence, our method outlines gullies keeping low false-positive rates while the classification quality has a good balance for the two classes (gully/no gully). Results show the most significant gully descriptors as the high temporal radar signal coherence (22.4%) and the low temporal variability in Normalized Difference Vegetation Index (21.8%). This research builds on previous studies to face the challenge of identifying and outlining gully-affected areas with a shortage of training data using global datasets, which are then transferable to other large (semi-) arid regions.
DOI:doi:10.1109/JSTARS.2020.3040284
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Verlag: https://ieeexplore.ieee.org/document/9268451
 Volltext: https://doi.org/10.1109/JSTARS.2020.3040284
 DOI: https://doi.org/10.1109/JSTARS.2020.3040284
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Agriculture
 Arid regions
 automatic classification
 Degradation
 gully erosion
 iterative learning
 land degradation
 Namibia
 random forest (RF)
 Random forests
 Soil
 soil erosion mapping
 Three-dimensional displays
 Training data
 Vegetation mapping
K10plus-PPN:175601499X
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68728625   QR-Code
zum Seitenanfang