Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Gu, Zuguang [VerfasserIn]   i
 Schlesner, Matthias [VerfasserIn]   i
 Hübschmann, Daniel [VerfasserIn]   i
Titel:cola
Titelzusatz:an R/Bioconductor package for consensus partitioning through a general framework
Verf.angabe:Zuguang Gu, Matthias Schlesner and Daniel Hübschmann
Jahr:2021
Jahr des Originals:2020
Umfang:16 S.
Fussnoten:Published online 4 December 2020 ; Gesehen am 29.06.2021
Titel Quelle:Enthalten in: Nucleic acids research
Ort Quelle:Oxford : Oxford Univ. Press, 1974
Jahr Quelle:2021
Band/Heft Quelle:49(2021), 3, Artikel-ID e15, Seite 1-16
ISSN Quelle:1362-4962
Abstract:Classification of high-throughput genomic data is a powerful method to assign samples to subgroups with specific molecular profiles. Consensus partitioning is the most widely applied approach to reveal subgroups by summarizing a consensus classification from a list of individual classifications generated by repeatedly executing clustering on random subsets of the data. It is able to evaluate the stability of the classification. We implemented a new R/Bioconductor package, cola, that provides a general framework for consensus partitioning. With cola, various parameters and methods can be user-defined and easily integrated into different steps of an analysis, e.g., feature selection, sample classification or defining signatures. cola provides a new method named ATC (ability to correlate to other rows) to extract features and recommends spherical k-means clustering (skmeans) for subgroup classification. We show that ATC and skmeans have better performance than other commonly used methods by a comprehensive benchmark on public datasets. We also benchmark key parameters in the consensus partitioning procedure, which helps users to select optimal parameter values. Moreover, cola provides rich functionalities to apply multiple partitioning methods in parallel and directly compare their results, as well as rich visualizations. cola can automate the complete analysis and generates a comprehensive HTML report.
DOI:doi:10.1093/nar/gkaa1146
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1093/nar/gkaa1146
 DOI: https://doi.org/10.1093/nar/gkaa1146
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1757463569
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68735157   QR-Code
zum Seitenanfang