Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Alvarez, José M. [VerfasserIn]   i
 Gevers, Theo [VerfasserIn]   i
 Diego, Ferran [VerfasserIn]   i
 Lopez, Antonio M. [VerfasserIn]   i
Titel:Road geometry classification by adaptive shape models
Verf.angabe:José M. Álvarez, Theo Gevers, Member, IEEE, Ferran Diego, and Antonio M. López
Jahr:2013
Jahr des Originals:2012
Umfang:10 S.
Teil:volume:14
 year:2013
 number:1
 pages:459-468
 extent:10
Fussnoten:Date of Publication: 12 November 2012 ; Gesehen am 12.05.2021
Titel Quelle:Enthalten in: Institute of Electrical and Electronics EngineersIEEE transactions on intelligent transportation systems
Ort Quelle:New York, NY : Inst. of Electrical and Electronics Engineers, 2000
Jahr Quelle:2013
Band/Heft Quelle:14(2013), 1, Seite 459-468
Abstract:Vision-based road detection is important for different applications in transportation, such as autonomous driving, vehicle collision warning, and pedestrian crossing detection. Common approaches to road detection are based on low-level road appearance (e.g., color or texture) and neglect of the scene geometry and context. Hence, using only low-level features makes these algorithms highly depend on structured roads, road homogeneity, and lighting conditions. Therefore, the aim of this paper is to classify road geometries for road detection through the analysis of scene composition and temporal coherence. Road geometry classification is proposed by building corresponding models from training images containing prototypical road geometries. We propose adaptive shape models where spatial pyramids are steered by the inherent spatial structure of road images. To reduce the influence of lighting variations, invariant features are used. Large-scale experiments show that the proposed road geometry classifier yields a high recognition rate of 73.57% ± 13.1, clearly outperforming other state-of-the-art methods. Including road shape information improves road detection results over existing appearance-based methods. Finally, it is shown that invariant features and temporal information provide robustness against disturbing imaging conditions.
DOI:doi:10.1109/TITS.2012.2221088
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1109/TITS.2012.2221088
 DOI: https://doi.org/10.1109/TITS.2012.2221088
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Adaptation models
 Geometry
 GIST
 Hidden Markov models
 holistic representation
 illuminant invariant
 image classification
 Lighting
 road detection
 Roads
 scene classifier
 scene recognition
 Shape
 spatial pyramids
 support vector machine
 Training
K10plus-PPN:1757759956
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68737450   QR-Code
zum Seitenanfang