Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Mersmann, Sven [VerfasserIn]   i
 Seitel, Alexander [VerfasserIn]   i
 Erz, Michael [VerfasserIn]   i
 Jähne, Bernd [VerfasserIn]   i
 Nickel, Felix [VerfasserIn]   i
 Mieth, Markus [VerfasserIn]   i
 Mehrabi, Arianeb [VerfasserIn]   i
 Maier-Hein, Lena [VerfasserIn]   i
Titel:Calibration of time-of-flight cameras for accurate intraoperative surface reconstruction
Verf.angabe:Sven Mersmann and Alexander Seitel, Division of Medical and Biological Informatics, Junior Group Computer-assisted Interventions, German Cancer Research Center (DKFZ), Heidelberg; Michael Erz and Bernd Jähne, Heidelberg Collaboratory for Image Processing (HCI), University of Heidelberg; Felix Nickel, Markus Mieth, and Arianeb Mehrabi, Department of General, Visceral and Transplant Surgery, University of Heidelberg; Lena Maier-Hein, Division of Medical and Biological Informatics, Junior Group Computer-assisted Interventions, German Cancer Research Center (DKFZ), Heidelberg
E-Jahr:2013
Jahr:17 July 2013
Umfang:19 S.
Teil:volume:40
 year:2013
 number:8
 elocationid:082701
 pages:1-19
 extent:19
Fussnoten:Gesehen am 20.05.2021
Titel Quelle:Enthalten in: Medical physics
Ort Quelle:Hoboken, NJ : Wiley, 1974
Jahr Quelle:2013
Band/Heft Quelle:40(2013), 8, Artikel-ID 082701, Seite 1-19
ISSN Quelle:2473-4209
 1522-8541
Abstract:Purpose: In image-guided surgery (IGS) intraoperative image acquisition of tissue shape, motion, and morphology is one of the main challenges. Recently, time-of-flight (ToF) cameras have emerged as a new means for fast range image acquisition that can be used for multimodal registration of the patient anatomy during surgery. The major drawbacks of ToF cameras are systematic errors in the image acquisition technique that compromise the quality of the measured range images. In this paper, we propose a calibration concept that, for the first time, accounts for all known systematic errors affecting the quality of ToF range images. Laboratory andin vitro experiments assess its performance in the context of IGS. Methods: For calibration the camera-related error sources depending on the sensor, the sensor temperature and the set integration time are corrected first, followed by the scene-specific errors, which are modeled as function of the measured distance, the amplitude and the radial distance to the principal point of the camera. Accounting for the high accuracy demands in IGS, we use a custom-made calibration device to provide reference distance data, the cameras are calibrated too. To evaluate the mitigation of the error, the remaining residual error after ToF depth calibration was compared with that arising from using the manufacturer routines for several state-of-the-art ToF cameras. The accuracy of reconstructed ToF surfaces was investigated after multimodal registration with computed tomography (CT) data of liver models by assessment of the target registration error (TRE) of markers introduced in the livers. Results: For the inspected distance range of up to 2 m, our calibration approach yielded a mean residual error to reference data ranging from 1.5 ± 4.3 mm for the best camera to 7.2 ± 11.0 mm. When compared to the data obtained from the manufacturer routines, the residual error was reduced by at least 78% from worst calibration result to most accurate manufacturer data. After registration of the CT data with the ToF data, the mean TRE ranged from 3.7 ± 2.1 mm for point-based and 5.7 ± 1.9 mm for surface-based registration for the best camera to 6.2 ± 3.4 and 11.1 ± 2.8 mm, respectively. Compared to data provided by the manufacturer, the mean TRE decreased by 8%-60% for point-based and by 18%-74% for surface-based registration. Conclusions: Using the proposed calibration approach improved the measurement accuracy of all investigated ToF cameras. Although evaluated in the context of intraoperative image acquisition, the proposed calibration procedure can easily be applied to other medical applications using ToF cameras, such as patient positioning or respiratory motion tracking in radiotherapy.
DOI:doi:10.1118/1.4812889
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/https://doi.org/10.1118/1.4812889
 Volltext: https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.4812889
 DOI: https://doi.org/10.1118/1.4812889
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Accessories therefor
 Analysis of motion
 biomedical equipment
 Calibrating of instruments or apparatus
 calibration
 Calibration
 cameras
 Cameras
 Computed tomography
 Computerised tomographs
 computerised tomography
 data acquisition
 Data acquisition
 Data acquisition and logging
 Details of cameras or camera bodies
 devices or methods
 Digital computing or data processing equipment or methods
 e.g. tourniquets
 Error correction
 Illumination
 Image data processing or generation
 image motion analysis
 image reconstruction
 image registration
 image sensors
 Image sensors
 Imager structures
 in general
 intraoperative surface reconstruction
 liver
 Liver
 medical image processing
 Medical imaging
 Reconstruction
 Registration
 specially adapted for specific applications
 Standards and calibration
 Surface reconstruction
 surgery
 Surgical instruments
 Testing or calibrating of apparatus or arrangements provided for in groups G01D1/00 to G01D15/00
 time-of-flight cameras
 Transforming light or analogous information into electric information
K10plus-PPN:1758234644
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68739956   QR-Code
zum Seitenanfang