Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Golla, Alena-Kathrin [VerfasserIn]   i
 Bauer, Dominik F. [VerfasserIn]   i
 Schmidt, Ralf [VerfasserIn]   i
 Russ, Tom [VerfasserIn]   i
 Nörenberg, Dominik [VerfasserIn]   i
 Chung, Khanlian [VerfasserIn]   i
 Tönnes, Christian [VerfasserIn]   i
 Schad, Lothar R. [VerfasserIn]   i
 Zöllner, Frank G. [VerfasserIn]   i
Titel:Convolutional neural network ensemble segmentation with ratio-based sampling for the arteries and veins in abdominal CT scans
Verf.angabe:Alena-Kathrin Golla, Dominik F. Bauer, Ralf Schmidt, Tom Russ, Dominik Nörenberg, Khanlian Chung, Christian Tönnes, Lothar R. Schad, and Frank G. Zöllner, Member, IEEE
E-Jahr:2021
Jahr:April 21, 2021
Umfang:9 S.
Fussnoten:Gesehen am 09.06.2021
Titel Quelle:Enthalten in: Institute of Electrical and Electronics EngineersIEEE transactions on biomedical engineering
Ort Quelle:New York, NY : IEEE, 1964
Jahr Quelle:2021
Band/Heft Quelle:68(2021), 5, Seite 1518-1526
ISSN Quelle:1558-2531
Abstract:Objective: Three-dimensional (3D) blood vessel structure information is important for diagnosis and treatment in various clinical scenarios. We present a fully automatic method for the extraction and differentiation of the arterial and venous vessel trees from abdominal contrast enhanced computed tomography (CE-CT) volumes using convolutional neural networks (CNNs). Methods: We used a novel ratio-based sampling method to train 2D and 3D versions of the U-Net, the V-Net and the DeepVesselNet. Networks were trained with a combination of the Dice and cross entropy loss. Performance was evaluated on 20 IRCAD subjects. Best performing networks were combined into an ensemble. We investigated seven different weighting schemes. Trained networks were additionally applied to 26 BTCV cases to validate the generalizability. Results: Based on our experiments, the optimal configuration is an equally weighted ensemble of 2D and 3D U- and V-Nets. Our method achieved Dice similarity coefficients of 0.758 $\boldsymbol\pm $ 0.050 (veins) and 0.838 $\boldsymbol\pm $ 0.074 (arteries) on the IRCAD data set. Application to the BTCV data set showed a high transfer ability. Conclusion: Abdominal vascular structures can be segmented more accurately using ensembles than individual CNNs. 2D and 3D networks have complementary strengths and weaknesses. Our ensemble of 2D and 3D U-Nets and V-Nets in combination with ratio-based sampling achieves a high agreement with manual annotations for both artery and vein segmentation. Our results surpass other state-of-the-art methods. Significance: Our segmentation pipeline can provide valuable information for the planning of living donor organ transplantations.
DOI:doi:10.1109/TBME.2020.3042640
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

DOI: https://doi.org/10.1109/TBME.2020.3042640
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Arteries
 Artificial neural networks
 Computed tomography
 Image segmentation
 Three-dimensional displays
 Training
 Two dimensional displays
 Veins
K10plus-PPN:1760121886
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68746436   QR-Code
zum Seitenanfang