Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Pio-Lopez, Léo [VerfasserIn]   i
 Valdeolivas, Alberto [VerfasserIn]   i
 Tichit, Laurent [VerfasserIn]   i
 Remy, Élisabeth [VerfasserIn]   i
 Baudot, Anaïs [VerfasserIn]   i
Titel:MultiVERSE
Titelzusatz:a multiplex and multiplex-heterogeneous network embedding approach
Verf.angabe:Léo Pio-Lopez, Alberto Valdeolivas, Laurent Tichit, Élisabeth Remy & Anaïs Baudot
E-Jahr:2021
Jahr:22 April 2021
Umfang:20 S.
Teil:volume:11
 year:2021
 elocationid:8794
 pages:1-20
 extent:20
Fussnoten:Gesehen am 25.06.2021
Titel Quelle:Enthalten in: Scientific reports
Ort Quelle:[London] : Macmillan Publishers Limited, part of Springer Nature, 2011
Jahr Quelle:2021
Band/Heft Quelle:11(2021), Artikel-ID 8794, Seite 1-20
ISSN Quelle:2045-2322
Abstract:Network embedding approaches are gaining momentum to analyse a large variety of networks. Indeed, these approaches have demonstrated their effectiveness in tasks such as community detection, node classification, and link prediction. However, very few network embedding methods have been specifically designed to handle multiplex networks, i.e. networks composed of different layers sharing the same set of nodes but having different types of edges. Moreover, to our knowledge, existing approaches cannot embed multiple nodes from multiplex-heterogeneous networks, i.e. networks composed of several multiplex networks containing both different types of nodes and edges. In this study, we propose MultiVERSE, an extension of the VERSE framework using Random Walks with Restart on Multiplex (RWR-M) and Multiplex-Heterogeneous (RWR-MH) networks. MultiVERSE is a fast and scalable method to learn node embeddings from multiplex and multiplex-heterogeneous networks. We evaluate MultiVERSE on several biological and social networks and demonstrate its performance. MultiVERSE indeed outperforms most of the other methods in the tasks of link prediction and network reconstruction for multiplex network embedding, and is also efficient in link prediction for multiplex-heterogeneous network embedding. Finally, we apply MultiVERSE to study rare disease-gene associations using link prediction and clustering. MultiVERSE is freely available on github at https://github.com/Lpiol/MultiVERSE.
DOI:doi:10.1038/s41598-021-87987-1
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1038/s41598-021-87987-1
 Volltext: https://www.nature.com/articles/s41598-021-87987-1
 DOI: https://doi.org/10.1038/s41598-021-87987-1
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1761268619
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68752601   QR-Code
zum Seitenanfang