| Online-Ressource |
Verfasst von: | Müller, Philipp Lothar [VerfasserIn]  |
| Odainic, Alexandru [VerfasserIn]  |
| Treis, Tim [VerfasserIn]  |
| Herrmann, Philipp [VerfasserIn]  |
| Tufail, Adnan [VerfasserIn]  |
| Holz, Frank G. [VerfasserIn]  |
| Pfau, Maximilian [VerfasserIn]  |
Titel: | Inferred retinal sensitivity in recessive Stargardt disease using machine learning |
Verf.angabe: | Philipp L. Müller, Alexandru Odainic, Tim Treis, Philipp Herrmann, Adnan Tufail, Frank G. Holz & Maximilian Pfau |
E-Jahr: | 2021 |
Jahr: | 14 January 2021 |
Umfang: | 11 S. |
Fussnoten: | Gesehen am 26.06.2021 |
Titel Quelle: | Enthalten in: Scientific reports |
Ort Quelle: | [London] : Macmillan Publishers Limited, part of Springer Nature, 2011 |
Jahr Quelle: | 2021 |
Band/Heft Quelle: | 11(2021), Artikel-ID 1466, Seite 1-11 |
ISSN Quelle: | 2045-2322 |
Abstract: | Spatially-resolved retinal function can be measured by psychophysical testing like fundus-controlled perimetry (FCP or ‘microperimetry’). It may serve as a performance outcome measure in emerging interventional clinical trials for macular diseases as requested by regulatory agencies. As FCP constitute laborious examinations, we have evaluated a machine-learning-based approach to predict spatially-resolved retinal function (’inferred sensitivity’) based on microstructural imaging (obtained by spectral domain optical coherence tomography) and patient data in recessive Stargardt disease. Using nested cross-validation, prediction accuracies of (mean absolute error, MAE [95% CI]) 4.74 dB [4.48-4.99] were achieved. After additional inclusion of limited FCP data, the latter reached 3.89 dB [3.67-4.10] comparable to the test-retest MAE estimate of 3.51 dB [3.11-3.91]. Analysis of the permutation importance revealed, that the IS&OS and RPE thickness were the most important features for the prediction of retinal sensitivity. ’Inferred sensitivity’, herein, enables to accurately estimate differential effects of retinal microstructure on spatially-resolved function in Stargardt disease, and might be used as quasi-functional surrogate marker for a refined and time-efficient investigation of possible functionally relevant treatment effects or disease progression. |
DOI: | doi:10.1038/s41598-020-80766-4 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.1038/s41598-020-80766-4 |
| Volltext: https://www.nature.com/articles/s41598-020-80766-4 |
| DOI: https://doi.org/10.1038/s41598-020-80766-4 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1761315129 |
Verknüpfungen: | → Zeitschrift |
Inferred retinal sensitivity in recessive Stargardt disease using machine learning / Müller, Philipp Lothar [VerfasserIn]; 14 January 2021 (Online-Ressource)