| Online-Ressource |
Verfasst von: | Wagner, Nils [VerfasserIn]  |
| Beuttenmueller, Fynn [VerfasserIn]  |
| Norlin, Nils [VerfasserIn]  |
| Gierten, Jakob [VerfasserIn]  |
| Boffi, Juan Carlos [VerfasserIn]  |
| Wittbrodt, Joachim [VerfasserIn]  |
| Weigert, Martin [VerfasserIn]  |
| Hufnagel, Lars [VerfasserIn]  |
| Prevedel, Robert [VerfasserIn]  |
| Kreshuk, Anna [VerfasserIn]  |
Titel: | Deep learning-enhanced light-field imaging with continuous validation |
Verf.angabe: | Nils Wagner, Fynn Beuttenmueller, Nils Norlin, Jakob Gierten, Juan Carlos Boffi, Joachim Wittbrodt, Martin Weigert, Lars Hufnagel, Robert Prevedel and Anna Kreshuk |
E-Jahr: | 2021 |
Jahr: | 7 May 2021 |
Umfang: | 7 S. |
Teil: | volume:18 |
| year:2021 |
| number:5 |
| pages:557-563 |
| extent:7 |
Fussnoten: | 13 Seiten Anhang ; Gesehen am 29.06.2021 |
Titel Quelle: | Enthalten in: Nature methods |
Ort Quelle: | London [u.a.] : Nature Publishing Group, 2004 |
Jahr Quelle: | 2021 |
Band/Heft Quelle: | 18(2021), 5, Seite 557-563 |
ISSN Quelle: | 1548-7105 |
Abstract: | Visualizing dynamic processes over large, three-dimensional fields of view at high speed is essential for many applications in the life sciences. Light-field microscopy (LFM) has emerged as a tool for fast volumetric image acquisition, but its effective throughput and widespread use in biology has been hampered by a computationally demanding and artifact-prone image reconstruction process. Here, we present a framework for artificial intelligence-enhanced microscopy, integrating a hybrid light-field light-sheet microscope and deep learning-based volume reconstruction. In our approach, concomitantly acquired, high-resolution two-dimensional light-sheet images continuously serve as training data and validation for the convolutional neural network reconstructing the raw LFM data during extended volumetric time-lapse imaging experiments. Our network delivers high-quality three-dimensional reconstructions at video-rate throughput, which can be further refined based on the high-resolution light-sheet images. We demonstrate the capabilities of our approach by imaging medaka heart dynamics and zebrafish neural activity with volumetric imaging rates up to 100 Hz. |
DOI: | doi:10.1038/s41592-021-01136-0 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext ; Verlag: https://doi.org/10.1038/s41592-021-01136-0 |
| Volltext: https://www.nature.com/articles/s41592-021-01136-0 |
| DOI: https://doi.org/10.1038/s41592-021-01136-0 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1761425226 |
Verknüpfungen: | → Zeitschrift |
Deep learning-enhanced light-field imaging with continuous validation / Wagner, Nils [VerfasserIn]; 7 May 2021 (Online-Ressource)