Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Schleicher, Dominik R. G. [VerfasserIn]   i
 Schober, Jennifer [VerfasserIn]   i
 Federrath, Christoph [VerfasserIn]   i
 Bovino, Stefano [VerfasserIn]   i
 Schmidt, Wolfram [VerfasserIn]   i
Titel:The small-scale dynamo
Titelzusatz:breaking universality at high Mach numbers
Verf.angabe:Dominik R.G. Schleicher, Jennifer Schober, Christoph Federrath, Stefano Bovino and Wolfram Schmidt
E-Jahr:2013
Jahr:8 February 2013
Umfang:19 S.
Teil:volume:15
 year:2013
 number:2
 elocationid:023017
 pages:1-19
 extent:19
Fussnoten:Gesehen am 01.07.2021
Titel Quelle:Enthalten in: New journal of physics
Ort Quelle:[Bad Honnef] : Dt. Physikalische Ges., 1999
Jahr Quelle:2013
Band/Heft Quelle:15(2013), 2, Artikel-ID 023017, Seite 1-19
ISSN Quelle:1367-2630
Abstract:The small-scale dynamo plays a substantial role in magnetizing the Universe under a large range of conditions, including subsonic turbulence at low Mach numbers, highly supersonic turbulence at high Mach numbers and a large range of magnetic Prandtl numbers Pm, i.e. the ratio of kinetic viscosity to magnetic resistivity. Low Mach numbers may, in particular, lead to the well-known, incompressible Kolmogorov turbulence, while for high Mach numbers, we are in the highly compressible regime, thus close to Burgers turbulence. In this paper, we explore whether in this large range of conditions, universal behavior can be expected. Our starting point is previous investigations in the kinematic regime. Here, analytic studies based on the Kazantsev model have shown that the behavior of the dynamo depends significantly on Pm and the type of turbulence, and numerical simulations indicate a strong dependence of the growth rate on the Mach number of the flow. Once the magnetic field saturates on the current amplification scale, backreactions occur and the growth is shifted to the next-larger scale. We employ a Fokker-Planck model to calculate the magnetic field amplification during the nonlinear regime, and find a resulting power-law growth that depends on the type of turbulence invoked. For Kolmogorov turbulence, we confirm previous results suggesting a linear growth of magnetic energy. For more general turbulent spectra, where the turbulent velocity scales with the characteristic length scale as uℓ∝ℓϑ, we find that the magnetic energy grows as (t/Ted)2ϑ/(1−ϑ), with t being the time coordinate and Ted the eddy-turnover time on the forcing scale of turbulence. For Burgers turbulence, ϑ = 1/2, quadratic rather than linear growth may thus be expected, as the spectral energy increases from smaller to larger scales more rapidly. The quadratic growth is due to the initially smaller growth rates obtained for Burgers turbulence. Similarly, we show that the characteristic length scale of the magnetic field grows as t1/(1−ϑ) in the general case, implying t3/2 for Kolmogorov and t2 for Burgers turbulence. Overall, we find that high Mach numbers, as typically associated with steep spectra of turbulence, may break the previously postulated universality, and introduce a dependence on the environment also in the nonlinear regime.
DOI:doi:10.1088/1367-2630/15/2/023017
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1088/1367-2630/15/2/023017
 DOI: https://doi.org/10.1088/1367-2630/15/2/023017
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:176171886X
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68754719   QR-Code
zum Seitenanfang