Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Gahn, Markus [VerfasserIn]  |
| Neuss-Radu, Maria [VerfasserIn]  |
| Pop, Iuliu Sorin [VerfasserIn]  |
Titel: | Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions |
Verf.angabe: | M. Gahn, M. Neuss-Radu, I.S. Pop |
E-Jahr: | 2021 |
Jahr: | 23 April 2021 |
Umfang: | 33 S. |
Teil: | volume:289 |
| year:2021 |
| pages:95-127 |
| extent:33 |
Fussnoten: | Gesehen am 01.07.2021 |
Titel Quelle: | Enthalten in: Journal of differential equations |
Ort Quelle: | Orlando, Fla. : Elsevier, 1965 |
Jahr Quelle: | 2021 |
Band/Heft Quelle: | 289(2021), Seite 95-127 |
ISSN Quelle: | 1090-2732 |
Abstract: | We consider a reaction-diffusion-advection problem in a perforated medium, with nonlinear reactions in the bulk and at the microscopic boundary, and slow diffusion scaling. The microstructure changes in time; the microstructural evolution is known a priori. The aim of the paper is the rigorous derivation of a homogenized model. We use appropriately scaled function spaces, which allow us to show compactness results, especially regarding the time-derivative and we prove strong two-scale compactness results of Kolmogorov-Simon-type, which allow to pass to the limit in the nonlinear terms. The derived macroscopic model depends on the micro- and the macro-variable, and the evolution of the underlying microstructure is approximated by time- and space-dependent reference elements. |
DOI: | doi:10.1016/j.jde.2021.04.013 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext ; Verlag: https://doi.org/10.1016/j.jde.2021.04.013 |
| Volltext: https://www.sciencedirect.com/science/article/pii/S0022039621002436 |
| DOI: https://doi.org/10.1016/j.jde.2021.04.013 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Evolving micro-domain |
| Homogenization |
| Nonlinear boundary condition |
| Reaction-diffusion-advection equation |
| Strong two-scale convergence |
| Unfolding operator |
K10plus-PPN: | 1761737953 |
Verknüpfungen: | → Zeitschrift |
Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions / Gahn, Markus [VerfasserIn]; 23 April 2021 (Online-Ressource)
68754778