Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Schneider, Till M. [VerfasserIn]   i
 Behl, Nicolas G. R. [VerfasserIn]   i
 Nagel, Armin Michael [VerfasserIn]   i
 Ladd, Mark E. [VerfasserIn]   i
 Heiland, Sabine [VerfasserIn]   i
 Bendszus, Martin [VerfasserIn]   i
 Straub, Sina [VerfasserIn]   i
Titel:Multiparametric MRI for characterization of the basal ganglia and the midbrain
Verf.angabe:Till M. Schneider, Jackie Ma, Patrick Wagner, Nicolas Behl, Armin M. Nagel, Mark E. Ladd, Sabine Heiland, Martin Bendszus and Sina Straub
E-Jahr:2021
Jahr:21 June 2021
Umfang:14 S.
Teil:volume:15
 year:2021
 day:21
 month:06
 elocationid:661504
 extent:14
Fussnoten:Gesehen am 13.07.2021
Titel Quelle:Enthalten in: Frontiers in neuroscience
Ort Quelle:Lausanne : Frontiers Research Foundation, 2007
Jahr Quelle:2021
Band/Heft Quelle:15(2021) vom: 21. Juni, Artikel-ID 661504
ISSN Quelle:1662-453X
Abstract:Objectives: To characterize subcortical nuclei by multiparametric quantitative magnetic resonance imaging. Materials and Methods: The following quantitative multiparametric MR data of five healthy volunteers were acquired on a 7T MRI system: (1) 3D gradient echo (GRE) data for the calculation of quantitative susceptibility maps (QSM), (2) GRE sequences with and without off-resonant magnetic transfer pulse for magnetization transfer ratio (MTR) calculation, (3) a magnetization‐prepared 2 rapid acquisition gradient echo sequence for T1 mapping, and (after a coil change) (4) a density-adapted 3D radial pulse sequence for 23Na imaging. First, all data were co-registered to the GRE data, volumes of interest (VOIs) for 21 subcortical structures were drawn manually for each volunteer, and a combined voxel-wise analysis of the four MR contrasts (QSM, MTR, T1, 23Na) in each structure was conducted to assess the quantitative, MR value-based differentiability of structures. Second, a machine learning algorithm based on random forests was trained to automatically classify the groups of multi-parametric voxel values from each VOI according to their association to one of the 21 subcortical structures. Results: The analysis of the integrated multimodal visualization of quantitative MR values in each structure yielded a successful classification among nuclei of the ascending reticular activation system (ARAS), the limbic system and the extrapyramidal system, while classification among (epi-)thalamic nuclei was less successful. The machine learning-based approach facilitated quantitative MR value-based structure classification especially in the group of extrapyramidal nuclei and reached an overall accuracy of 85% regarding all selected nuclei. Conclusions: Multimodal quantitative MR enabled excellent differentiation of a wide spectrum of subcortical nuclei with reasonable accuracy and may thus enable sensitive detection of disease and nucleus-specific MR-based contrast alterations in the future.
DOI:doi:10.3389/fnins.2021.661504
URL:Kostenfrei: Volltext ; Verlag: https://doi.org/10.3389/fnins.2021.661504
 Kostenfrei: Volltext: https://www.frontiersin.org/articles/10.3389/fnins.2021.661504/full
 DOI: https://doi.org/10.3389/fnins.2021.661504
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Basal Ganglia
 machine learning
 Magnetic Resonance Imaging - Ultra High Field
 magnetic transfer
 Quantitative susceptibility mapping
 Sodium imaging
K10plus-PPN:1762746360
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68759558   QR-Code
zum Seitenanfang