Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Garrow, Carly R. [VerfasserIn]   i
 Kowalewski, Karl-Friedrich [VerfasserIn]   i
 Li, Linhong [VerfasserIn]   i
 Wagner, Martin [VerfasserIn]   i
 Schmidt, Mona Wanda [VerfasserIn]   i
 Engelhardt, Sandy [VerfasserIn]   i
 Hashimoto, Daniel A. [VerfasserIn]   i
 Kenngott, Hannes Götz [VerfasserIn]   i
 Bodenstedt, Sebastian [VerfasserIn]   i
 Speidel, Stefanie [VerfasserIn]   i
 Müller, Beat P. [VerfasserIn]   i
 Nickel, Felix [VerfasserIn]   i
Titel:Machine learning for surgical phase recognition
Titelzusatz:a systematic review
Verf.angabe:Carly R. Garrow, Karl-Friedrich Kowalewski, Linhong Li, Martin Wagner, Mona W. Schmidt, Sandy Engelhardt, Daniel A. Hashimoto, Hannes G. Kenngott, Sebastian Bodenstedt, Stefanie Speidel, Beat P. Müller-Stich, Felix Nickel
E-Jahr:2021
Jahr:April 2021
Umfang:10 S.
Fussnoten:Gesehen am 14.07.2021
Titel Quelle:Enthalten in: Annals of surgery
Ort Quelle:[Erscheinungsort nicht ermittelbar] : Lippincott Williams & Wilkins, 1885
Jahr Quelle:2021
Band/Heft Quelle:273(2021), 4, Seite 684-693
ISSN Quelle:1528-1140
Abstract:Objective: To provide an overview of ML models and data streams utilized for automated surgical phase recognition. Background: Phase recognition identifies different steps and phases of an operation. ML is an evolving technology that allows analysis and interpretation of huge data sets. Automation of phase recognition based on data inputs is essential for optimization of workflow, surgical training, intraoperative assistance, patient safety, and efficiency. Methods: A systematic review was performed according to the Cochrane recommendations and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. PubMed, Web of Science, IEEExplore, GoogleScholar, and CiteSeerX were searched. Literature describing phase recognition based on ML models and the capture of intraoperative signals during general surgery procedures was included. Results: A total of 2254 titles/abstracts were screened, and 35 full-texts were included. Most commonly used ML models were Hidden Markov Models and Artificial Neural Networks with a trend towards higher complexity over time. Most frequently used data types were feature learning from surgical videos and manual annotation of instrument use. Laparoscopic cholecystectomy was used most commonly, often achieving accuracy rates over 90%, though there was no consistent standardization of defined phases. Conclusions: ML for surgical phase recognition can be performed with high accuracy, depending on the model, data type, and complexity of surgery. Different intraoperative data inputs such as video and instrument type can successfully be used. Most ML models still require significant amounts of manual expert annotations for training. The ML models may drive surgical workflow towards standardization, efficiency, and objectiveness to improve patient outcome in the future.
DOI:doi:10.1097/SLA.0000000000004425
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1097/SLA.0000000000004425
 Volltext: https://journals.lww.com/annalsofsurgery/Fulltext/2021/04000/Machine_Learning_for_Surgical_Phase_Recognition__A.11.aspx
 DOI: https://doi.org/10.1097/SLA.0000000000004425
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1762900130
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68760151   QR-Code
zum Seitenanfang