Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Schaack, Dominik [VerfasserIn]   i
 Weigand, Markus A. [VerfasserIn]   i
 Uhle, Florian [VerfasserIn]   i
Titel:Comparison of machine-learning methodologies for accurate diagnosis of sepsis using microarray gene expression data
Verf.angabe:Dominik Schaack, Markus A. Weigand, Florian Uhle
E-Jahr:2021
Jahr:May 17, 2021
Umfang:18 S.
Teil:volume:16
 year:2021
 number:5
 elocationid:e0251800
 pages:1-18
 extent:18
Fussnoten:Gesehen am 10.07.2021
Titel Quelle:Enthalten in: PLOS ONE
Ort Quelle:San Francisco, California, US : PLOS, 2006
Jahr Quelle:2021
Band/Heft Quelle:16(2021), 5, Artikel-ID e0251800, Seite 1-18
ISSN Quelle:1932-6203
Abstract:We investigate the feasibility of molecular-level sample classification of sepsis using microarray gene expression data merged by in silico meta-analysis. Publicly available data series were extracted from NCBI Gene Expression Omnibus and EMBL-EBI ArrayExpress to create a comprehensive meta-analysis microarray expression set (meta-expression set). Measurements had to be obtained via microarray-technique from whole blood samples of adult or pediatric patients with sepsis diagnosed based on international consensus definition immediately after admission to the intensive care unit. We aggregate trauma patients, systemic inflammatory response syndrome (SIRS) patients, and healthy controls in a non-septic entity. Differential expression (DE) analysis is compared with machine-learning-based solutions like decision tree (DT), random forest (RF), support vector machine (SVM), and deep-learning neural networks (DNNs). We evaluated classifier training and discrimination performance in 100 independent iterations. To test diagnostic resilience, we gradually degraded expression data in multiple levels. Clustering of expression values based on DE genes results in partial identification of sepsis samples. In contrast, RF, SVM, and DNN provide excellent diagnostic performance measured in terms of accuracy and area under the curve (>0.96 and >0.99, respectively). We prove DNNs as the most resilient methodology, virtually unaffected by targeted removal of DE genes. By surpassing most other published solutions, the presented approach substantially augments current diagnostic capability in intensive care medicine.
DOI:doi:10.1371/journal.pone.0251800
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1371/journal.pone.0251800
 Volltext: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251800
 DOI: https://doi.org/10.1371/journal.pone.0251800
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Diagnostic medicine
 Gene expression
 Machine learning
 Microarrays
 Neural networks
 Sepsis
 Support vector machines
 Systemic inflammatory response syndrome
K10plus-PPN:1765992125
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68768449   QR-Code
zum Seitenanfang