Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Vale Silva, Luis A. [VerfasserIn]   i
 Rohr, Karl [VerfasserIn]   i
Titel:Long-term cancer survival prediction using multimodal deep learning
Verf.angabe:Luís A. Vale-Silva & Karl Rohr
E-Jahr:2021
Jahr:29 June 2021
Umfang:12 S.
Fussnoten:Gesehen am 12.08.2021
Titel Quelle:Enthalten in: Scientific reports
Ort Quelle:[London] : Macmillan Publishers Limited, part of Springer Nature, 2011
Jahr Quelle:2021
Band/Heft Quelle:11(2021), Artikel-ID 13505, Seite 1-12
ISSN Quelle:2045-2322
Abstract:The age of precision medicine demands powerful computational techniques to handle high-dimensional patient data. We present MultiSurv, a multimodal deep learning method for long-term pan-cancer survival prediction. MultiSurv uses dedicated submodels to establish feature representations of clinical, imaging, and different high-dimensional omics data modalities. A data fusion layer aggregates the multimodal representations, and a prediction submodel generates conditional survival probabilities for follow-up time intervals spanning several decades. MultiSurv is the first non-linear and non-proportional survival prediction method that leverages multimodal data. In addition, MultiSurv can handle missing data, including single values and complete data modalities. MultiSurv was applied to data from 33 different cancer types and yields accurate pan-cancer patient survival curves. A quantitative comparison with previous methods showed that Multisurv achieves the best results according to different time-dependent metrics. We also generated visualizations of the learned multimodal representation of MultiSurv, which revealed insights on cancer characteristics and heterogeneity.
DOI:doi:10.1038/s41598-021-92799-4
URL:kostenfrei: Volltext: https://doi.org/10.1038/s41598-021-92799-4
 kostenfrei: Volltext: https://www.nature.com/articles/s41598-021-92799-4
 DOI: https://doi.org/10.1038/s41598-021-92799-4
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1766521630
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68770104   QR-Code
zum Seitenanfang