Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Roß, Tobias [VerfasserIn]   i
 Reinke, Annika [VerfasserIn]   i
 Full, Peter M. [VerfasserIn]   i
 Wagner, Martin [VerfasserIn]   i
 Kenngott, Hannes Götz [VerfasserIn]   i
 Apitz, Martin [VerfasserIn]   i
 Hempe, Hellena [VerfasserIn]   i
 Mindroc-Filimon, Diana [VerfasserIn]   i
 Scholz, Patrick [VerfasserIn]   i
 Tran, Thuy Nuong [VerfasserIn]   i
 Bruno, Pierangela [VerfasserIn]   i
 Arbeláez, Pablo [VerfasserIn]   i
 Bian, Gui-Bin [VerfasserIn]   i
 Bodenstedt, Sebastian [VerfasserIn]   i
 Bolmgren, Jon Lindström [VerfasserIn]   i
 Bravo-Sánchez, Laura [VerfasserIn]   i
 Chen, Hua-Bin [VerfasserIn]   i
 González, Cristina [VerfasserIn]   i
 Guo, Dong [VerfasserIn]   i
 Halvorsen, Pål [VerfasserIn]   i
 Heng, Pheng-Ann [VerfasserIn]   i
 Hosgor, Enes [VerfasserIn]   i
 Hou, Zeng-Guang [VerfasserIn]   i
 Isensee, Fabian [VerfasserIn]   i
 Jha, Debesh [VerfasserIn]   i
 Jiang, Tingting [VerfasserIn]   i
 Jin, Yueming [VerfasserIn]   i
 Kirtac, Kadir [VerfasserIn]   i
 Kletz, Sabrina [VerfasserIn]   i
 Leger, Stefan [VerfasserIn]   i
 Li, Zhixuan [VerfasserIn]   i
 Maier-Hein, Klaus H. [VerfasserIn]   i
 Ni, Zhen-Liang [VerfasserIn]   i
 Riegler, Michael A. [VerfasserIn]   i
 Schoeffmann, Klaus [VerfasserIn]   i
 Shi, Ruohua [VerfasserIn]   i
 Speidel, Stefanie [VerfasserIn]   i
 Stenzel, Michael [VerfasserIn]   i
 Twick, Isabell [VerfasserIn]   i
 Wang, Gutai [VerfasserIn]   i
 Wang, Jiacheng [VerfasserIn]   i
 Wang, Liansheng [VerfasserIn]   i
 Wang, Lu [VerfasserIn]   i
 Zhang, Yujie [VerfasserIn]   i
 Zhou, Yan-Jie [VerfasserIn]   i
 Zhu, Lei [VerfasserIn]   i
 Wiesenfarth, Manuel [VerfasserIn]   i
 Kopp-Schneider, Annette [VerfasserIn]   i
 Müller, Beat P. [VerfasserIn]   i
 Maier-Hein, Lena [VerfasserIn]   i
Titel:Comparative validation of multi-instance instrument segmentation in endoscopy
Titelzusatz:results of the ROBUST-MIS 2019 challenge
Verf.angabe:Tobias Roß, Annika Reinke, Peter M. Full, Martin Wagner, Hannes Kenngott, Martin Apitz, Hellena Hempe, Diana Mindroc-Filimon, Patrick Scholz, Thuy Nuong Tran, Pierangela Bruno, Pablo Arbeláez, Gui-Bin Bian, Sebastian Bodenstedt, Jon Lindström Bolmgren, Laura Bravo-Sánchez, Hua-Bin Chen, Cristina González, Dong Guo, Pål Halvorsen, Pheng-Ann Heng, Enes Hosgor, Zeng-Guang Hou, Fabian Isensee, Debesh Jha, Tingting Jiang, Yueming Jin, Kadir Kirtac, Sabrina Kletz, Stefan Leger, Zhixuan Li, Klaus H. Maier-Hein, Zhen-Liang Ni, Michael A. Riegler, Klaus Schoeffmann, Ruohua Shi, Stefanie Speidel, Michael Stenzel, Isabell Twick, Gutai Wang, Jiacheng Wang, Liansheng Wang, Lu Wang, Yujie Zhang, Yan-Jie Zhou, Lei Zhu, Manuel Wiesenfarth, Annette Kopp-Schneider, Beat P. Müller-Stich, Lena Maier-Hein
Jahr:2021
Umfang:26 S.
Fussnoten:Available online 28 November 2020 ; Gesehen am 17.08.2021
Titel Quelle:Enthalten in: Medical image analysis
Ort Quelle:Amsterdam [u.a.] : Elsevier Science, 1996
Jahr Quelle:2021
Band/Heft Quelle:70(2021), Artikel-ID 101920, Seite 1-26
ISSN Quelle:1361-8423
Abstract:Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions. While numerous methods for detecting, segmenting and tracking of medical instruments based on endoscopic video images have been proposed in the literature, key limitations remain to be addressed: Firstly, robustness, that is, the reliable performance of state-of-the-art methods when run on challenging images (e.g. in the presence of blood, smoke or motion artifacts). Secondly, generalization; algorithms trained for a specific intervention in a specific hospital should generalize to other interventions or institutions. In an effort to promote solutions for these limitations, we organized the Robust Medical Instrument Segmentation (ROBUST-MIS) challenge as an international benchmarking competition with a specific focus on the robustness and generalization capabilities of algorithms. For the first time in the field of endoscopic image processing, our challenge included a task on binary segmentation and also addressed multi-instance detection and segmentation. The challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures from three different types of surgery. The validation of the competing methods for the three tasks (binary segmentation, multi-instance detection and multi-instance segmentation) was performed in three different stages with an increasing domain gap between the training and the test data. The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap. While the average detection and segmentation quality of the best-performing algorithms is high, future research should concentrate on detection and segmentation of small, crossing, moving and transparent instrument(s) (parts).
DOI:doi:10.1016/j.media.2020.101920
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.media.2020.101920
 Volltext: https://www.sciencedirect.com/science/article/pii/S136184152030284X
 DOI: https://doi.org/10.1016/j.media.2020.101920
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Minimally invasive surgery
 Multi-instance instrument
 Robustness and generalization
 Surgical data science
K10plus-PPN:1767175701
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68771323   QR-Code
zum Seitenanfang