Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kriegsmann, Mark [VerfasserIn]   i
 Kriegsmann, Katharina [VerfasserIn]   i
 Steinbuß, Georg [VerfasserIn]   i
 Zgorzelski, Christiane [VerfasserIn]   i
 Kraft, Anne [VerfasserIn]   i
 Gaida, Matthias [VerfasserIn]   i
Titel:Deep learning in pancreatic tissue
Titelzusatz:identification of anatomical structures, pancreatic intraepithelial neoplasia, and ductal adenocarcinoma
Verf.angabe:Mark Kriegsmann, Katharina Kriegsmann, Georg Steinbuss, Christiane Zgorzelski, Anne Kraft and Matthias M. Gaida
E-Jahr:2021
Jahr:20 May 2021
Umfang:14 S.
Fussnoten:Gesehen am 23.08.2021
Titel Quelle:Enthalten in: International journal of molecular sciences
Ort Quelle:Basel : Molecular Diversity Preservation International, 2000
Jahr Quelle:2021
Band/Heft Quelle:22(2021), 10 vom: 20. Mai, Artikel-ID 5385, Seite 1-14
ISSN Quelle:1422-0067
 1661-6596
Abstract:Identification of pancreatic ductal adenocarcinoma (PDAC) and precursor lesions in histological tissue slides can be challenging and elaborate, especially due to tumor heterogeneity. Thus, supportive tools for the identification of anatomical and pathological tissue structures are desired. Deep learning methods recently emerged, which classify histological structures into image categories with high accuracy. However, to date, only a limited number of classes and patients have been included in histopathological studies. In this study, scanned histopathological tissue slides from tissue microarrays of PDAC patients (n = 201, image patches n = 81.165) were extracted and assigned to a training, validation, and test set. With these patches, we implemented a convolutional neuronal network, established quality control measures and a method to interpret the model, and implemented a workflow for whole tissue slides. An optimized EfficientNet algorithm achieved high accuracies that allowed automatically localizing and quantifying tissue categories including pancreatic intraepithelial neoplasia and PDAC in whole tissue slides. SmoothGrad heatmaps allowed explaining image classification results. This is the first study that utilizes deep learning for automatic identification of different anatomical tissue structures and diseases on histopathological images of pancreatic tissue specimens. The proposed approach is a valuable tool to support routine diagnostic review and pancreatic cancer research.
DOI:doi:10.3390/ijms22105385
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.3390/ijms22105385
 Volltext: https://www.mdpi.com/1422-0067/22/10/5385
 DOI: https://doi.org/10.3390/ijms22105385
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:artificial intelligence
 convolutional neuronal networks
 deep learning
 pancreatic cancer
K10plus-PPN:1767687214
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68772988   QR-Code
zum Seitenanfang