Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Zhang, Kevin Sun [VerfasserIn]   i
 Schelb, Patrick [VerfasserIn]   i
 Kohl, Simon [VerfasserIn]   i
 Radtke, Jan Philipp [VerfasserIn]   i
 Wiesenfarth, Manuel [VerfasserIn]   i
 Schimmoller, Lars [VerfasserIn]   i
 Kuder, Tristan Anselm [VerfasserIn]   i
 Stenzinger, Albrecht [VerfasserIn]   i
 Hohenfellner, Markus [VerfasserIn]   i
 Schlemmer, Heinz-Peter [VerfasserIn]   i
 Maier-Hein, Klaus [VerfasserIn]   i
 Bonekamp, David [VerfasserIn]   i
Titel:Improvement of PI-RADS-dependent prostate cancer classification by quantitative image assessment using radiomics or mean ADC
Verf.angabe:Kevin Sun Zhang, Patrick Schelb, Simon Kohl, Jan Philipp Radtke, Manuel Wiesenfarth, Lars Schimmoller, Tristan Anselm Kuder, Albrecht Stenzinger, Markus Hohenfellner, Heinz-Peter Schlemmer, Klaus Maier-Hein, David Bonekamp
E-Jahr:2021
Jahr:18 June 2021
Umfang:9 S.
Fussnoten:Gesehen am 08.09.2021
Titel Quelle:Enthalten in: Magnetic resonance imaging
Ort Quelle:Amsterdam [u.a.] : Elsevier Science, 1982
Jahr Quelle:2021
Band/Heft Quelle:82(2021), Seite 9-17
ISSN Quelle:1873-5894
Abstract:Background Currently, interpretation of prostate MRI is performed qualitatively. Quantitative assessment of the mean apparent diffusion coefficient (mADC) is promising to improve diagnostic accuracy while radiomic machine learning (RML) allows to probe complex parameter spaces to identify the most promising multi-parametric models. We have previously developed quantitative RML and ADC classifiers for prediction of clinically significant prostate cancer (sPC) from prostate MRI, however these have not been combined with radiologist PI-RADS assessment. Purpose To propose and evaluate diagnostic algorithms combining quantitative ADC or RML and qualitative PI-RADS assessment for prediction of sPC. Methods and population The previously published quantitative models (RML and mADC) were utilized to construct four algorithms: 1) Down(ADC) and 2) Down(RML): clinically detected PI-RADS positive prostate lesions (defined as either PIRADS>3 or >4) were downgraded to MRI negative upon negative quantitative assessment; and 3) Up(ADC) and 4) Up(RML): MRI-negative lesions were upgraded to MRI-positive upon positive assessment of quantitative parameters. Analyses were performed at the individual lesion level and the patient level in 133 consecutive patients with suspicion for clinically significant prostate cancer (sPC, International Society of Urological Pathology (ISUP) grade group>2), the test set subcohort of a previously published patient population. McNemar test was used to compare differences in sensitivity, specificity and accuracy. Differences between lesions of different prostate zones were assessed using ANOVA. Reduction in false positive assessments was assessed as ratios. Results Compared to clinical assessment at the PI-RADS>4 cut-off alone, algorithms Down(ADC/RML) improved specificity from 43% to 65% (p = 0.001)/62% (p = 0.003), while sensitivity did not change significantly at 89% compared to 87% (p = 1.0)/89% (unchanged) on the patient level. Reduction of false positive lesions was 50% [26/52] in the PZ and 53% [15/28] in the TZ. Algorithms Up(ADC/RML) led, on a patient basis, to an unfavorable loss of specificity from 43% to 30% (p = 0.039)/32% (p = 0.106), with insignificant increase of sensitivity from 89% to 96%/96% (both p = 1.0). Compared to clinical assessment at the PI-RADS>3 cut-off alone, similar results were observed for Down(ADC) with significantly increased specificity from 2% to 23% (p < 0.001) and unchanged sensitivity on the lesion level; patient level specificity increased only non-significantly. Conclusion Downgrading PI-RADS>3 and > 4 lesions based on quantitative mADC measurements or RML classifiers can increase diagnostic accuracy by enhancing specificity and preserving sensitivity for detection of sPC and reduce false positives.
DOI:doi:10.1016/j.mri.2021.06.013
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.mri.2021.06.013
 Volltext: https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=DynamicDOIArticle&SrcApp=WOS&KeyAID=10.1016%2 ...
 DOI: https://doi.org/10.1016/j.mri.2021.06.013
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:active surveillance
 biopsy
 mri
 risk
 system
 values
K10plus-PPN:176966940X
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68777629   QR-Code
zum Seitenanfang