Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Nunes-Alves, Ariane [VerfasserIn]   i
 Ormersbach, Fabian [VerfasserIn]   i
 Wade, Rebecca C. [VerfasserIn]   i
Titel:Prediction of the drug-target binding kinetics for flexible proteins by comparative binding energy analysis
Verf.angabe:Ariane Nunes-Alves, Fabian Ormersbach, and Rebecca C. Wade
E-Jahr:2021
Jahr:July 1, 2021
Umfang:14 S.
Teil:volume:61
 year:2021
 number:7
 pages:3708-3721
 extent:14
Fussnoten:Gesehen am 29.09.2021
Titel Quelle:Enthalten in: Journal of chemical information and modeling
Ort Quelle:Washington, DC : American Chemical Society, 1975
Jahr Quelle:2021
Band/Heft Quelle:61(2021), 7, Seite 3708-3721
ISSN Quelle:1549-960X
Abstract:There is growing consensus that the optimization of the kinetic parameters for drug-protein binding leads to improved drug efficacy. Therefore, computational methods have been developed to predict kinetic rates and to derive quantitative structure-kinetic relationships (QSKRs). Many of these methods are based on crystal structures of ligand-protein complexes. However, a drawback is that each ligand-protein complex is usually treated as having a single structure. Here, we present a modification of COMparative BINding Energy (COMBINE) analysis, which uses the structures of ligand-protein complexes to predict binding parameters. We introduce the option of using multiple structures to describe each ligand-protein complex in COMBINE analysis and apply this to study the effects of protein flexibility on the derivation of dissociation rate constants (koff) for inhibitors of p38 mitogen-activated protein (MAP) kinase, which has a flexible binding site. Multiple structures were obtained for each ligand-protein complex by performing docking to an ensemble of protein configurations obtained from molecular dynamics simulations. Coefficients to scale ligand-protein interaction energies determined from energy-minimized structures of ligand-protein complexes were obtained by partial least squares regression, and they allowed for the computation of koff values. The QSKR model obtained using single, energy-minimized crystal structures for each ligand-protein complex had higher predictive power than the QSKR model obtained with multiple structures from ensemble docking. However, incorporation of ligand-protein flexibility helped to highlight additional ligand-protein interactions that lead to longer residence times, such as interactions with residues Arg67 and Asp168, which are close to the ligand in many crystal structures. These results show that COMBINE analysis is a promising method to guide the design of compounds that bind to flexible proteins with improved binding kinetics.
DOI:doi:10.1021/acs.jcim.1c00639
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1021/acs.jcim.1c00639
 DOI: https://doi.org/10.1021/acs.jcim.1c00639
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1772050792
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68784496   QR-Code
zum Seitenanfang