Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Zimmer, Christoph [VerfasserIn]   i
Titel:Experimental design for stochastic models of nonlinear signaling pathways using an interval-wise linear noise approximation and state estimation
Verf.angabe:Christoph Zimmer
E-Jahr:2016
Jahr:September 1, 2016
Umfang:37 S.
Teil:volume:11
 year:2016
 number:9
 elocationid:e0159902
 pages:1-37
 extent:37
Fussnoten:Gesehen am 08.10.2021
Titel Quelle:Enthalten in: PLOS ONE
Ort Quelle:San Francisco, California, US : PLOS, 2006
Jahr Quelle:2016
Band/Heft Quelle:11(2016), 9, Artikel-ID e0159902, Seite 1-37
ISSN Quelle:1932-6203
Abstract:Background Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. Methods The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. Results The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models.
DOI:doi:10.1371/journal.pone.0159902
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1371/journal.pone.0159902
 Volltext: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159902
 DOI: https://doi.org/10.1371/journal.pone.0159902
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Approximation methods
 Covariance
 Ellipsoids
 Experimental design
 Monte Carlo method
 Normal distribution
 Simulation and modeling
 Systems biology
K10plus-PPN:1772821888
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68787899   QR-Code
zum Seitenanfang