Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Giesel, Eileen [VerfasserIn]   i
 Reischke, Robert [VerfasserIn]   i
 Schäfer, Björn Malte [VerfasserIn]   i
 Chia, Dominic [VerfasserIn]   i
Titel:Information geometry in cosmological inference problems
Verf.angabe:Eileen Giesel, Robert Reischke, Björn Malte Schäfer, Dominic Chia
E-Jahr:2021
Jahr:4 January 2021
Umfang:20 S.
Teil:year:2021
 number:1
 elocationid:005
 pages:1-20
 extent:20
Fussnoten:Gesehen am 11.10.2021
Titel Quelle:Enthalten in: Journal of cosmology and astroparticle physics
Ort Quelle:London : IOP, 2003
Jahr Quelle:2021
Band/Heft Quelle:(2021), 1, Artikel-ID 005, Seite 1-20
ISSN Quelle:1475-7516
Abstract:Statistical inference often involves models which are non-linear in the parameters and which therefore typically exhibit non-Gaussian posterior distributions. These non-Gaussianities can be prominent especially when data is limited or not constraining enough. Many computational and analytical tools exist that can deal with non-Gaussian distributions, and empirical Gaussianisation transforms can be constructed that can reduce the amount of non-Gaussianity in a distribution. In this work, we employ methods from information geometry, which considers a set of probability distributions for some given model to be a manifold with a metric Riemannian structure, given by the Fisher information. In this framework we study the differential geometrical meaning of non-Gaussianities in a higher order Fisher approximation, and their respective transformation behaviour under re-parameterisation, which corresponds to a chart transition on the statistical manifold. While weak non-Gaussianities vanish in normal coordinates in a first order approximation, one can in general not find transformations that discard non-Gaussianities globally. As a topical application in cosmology we consider the likelihood of the supernovae distance-redshift relation for the parameter pair (Ωm0, w). We show that the corresponding manifold is non-flat and demonstrate the connection between confidence intervals and geodesic length, determine the curvature of that likelihood and quantify degeneracies by means of Lie-derivatives.
DOI:doi:10.1088/1475-7516/2021/01/005
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1088/1475-7516/2021/01/005
 DOI: https://doi.org/10.1088/1475-7516/2021/01/005
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1773297120
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68788407   QR-Code
zum Seitenanfang