Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Giesel, Eileen [VerfasserIn]  |
| Reischke, Robert [VerfasserIn]  |
| Schäfer, Björn Malte [VerfasserIn]  |
| Chia, Dominic [VerfasserIn]  |
Titel: | Information geometry in cosmological inference problems |
Verf.angabe: | Eileen Giesel, Robert Reischke, Björn Malte Schäfer, Dominic Chia |
E-Jahr: | 2021 |
Jahr: | 4 January 2021 |
Umfang: | 20 S. |
Teil: | year:2021 |
| number:1 |
| elocationid:005 |
| pages:1-20 |
| extent:20 |
Fussnoten: | Gesehen am 11.10.2021 |
Titel Quelle: | Enthalten in: Journal of cosmology and astroparticle physics |
Ort Quelle: | London : IOP, 2003 |
Jahr Quelle: | 2021 |
Band/Heft Quelle: | (2021), 1, Artikel-ID 005, Seite 1-20 |
ISSN Quelle: | 1475-7516 |
Abstract: | Statistical inference often involves models which are non-linear in the parameters and which therefore typically exhibit non-Gaussian posterior distributions. These non-Gaussianities can be prominent especially when data is limited or not constraining enough. Many computational and analytical tools exist that can deal with non-Gaussian distributions, and empirical Gaussianisation transforms can be constructed that can reduce the amount of non-Gaussianity in a distribution. In this work, we employ methods from information geometry, which considers a set of probability distributions for some given model to be a manifold with a metric Riemannian structure, given by the Fisher information. In this framework we study the differential geometrical meaning of non-Gaussianities in a higher order Fisher approximation, and their respective transformation behaviour under re-parameterisation, which corresponds to a chart transition on the statistical manifold. While weak non-Gaussianities vanish in normal coordinates in a first order approximation, one can in general not find transformations that discard non-Gaussianities globally. As a topical application in cosmology we consider the likelihood of the supernovae distance-redshift relation for the parameter pair (Ωm0, w). We show that the corresponding manifold is non-flat and demonstrate the connection between confidence intervals and geodesic length, determine the curvature of that likelihood and quantify degeneracies by means of Lie-derivatives. |
DOI: | doi:10.1088/1475-7516/2021/01/005 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.1088/1475-7516/2021/01/005 |
| DOI: https://doi.org/10.1088/1475-7516/2021/01/005 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1773297120 |
Verknüpfungen: | → Zeitschrift |
Information geometry in cosmological inference problems / Giesel, Eileen [VerfasserIn]; 4 January 2021 (Online-Ressource)
68788407