Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Rudolf, Eva Esther [VerfasserIn]   i
 Hüther, Patrick [VerfasserIn]   i
 Forné, Ignasi [VerfasserIn]   i
 Georgii, Elisabeth [VerfasserIn]   i
 Han, Yongtao [VerfasserIn]   i
 Hell, Rüdiger [VerfasserIn]   i
 Wirtz, Markus [VerfasserIn]   i
 Imhof, Axel [VerfasserIn]   i
 Becker, Claude [VerfasserIn]   i
 Durner, Jörg [VerfasserIn]   i
 Lindermayr, Christian [VerfasserIn]   i
Titel:GSNOR contributes to demethylation and expression of transposable elements and stress-responsive genes
Verf.angabe:Eva Esther Rudolf, Patrick Hüther, Ignasi Forné, Elisabeth Georgii, Yongtao Han, Rüdiger Hell, Markus Wirtz, Axel Imhof, Claude Becker, Jörg Durner and Christian Lindermayr
E-Jahr:2021
Jahr:15 July 2021
Umfang:28 S.
Fussnoten:Gesehen am 25.10.2021
Titel Quelle:Enthalten in: Antioxidants
Ort Quelle:Basel : MDPI, 2013
Jahr Quelle:2021
Band/Heft Quelle:10(2021), 7, Artikel-ID 1128, Seite 1-28
ISSN Quelle:2076-3921
Abstract:In the past, reactive nitrogen species (RNS) were supposed to be stress-induced by-products of disturbed metabolism that cause oxidative damage to biomolecules. However, emerging evidence demonstrates a substantial role of RNS as endogenous signals in eukaryotes. In plants, S-nitrosoglutathione (GSNO) is the dominant RNS and serves as the •NO donor for S-nitrosation of diverse effector proteins. Remarkably, the endogenous GSNO level is tightly controlled by S-nitrosoglutathione reductase (GSNOR) that irreversibly inactivates the glutathione-bound NO to ammonium. Exogenous feeding of diverse RNS, including GSNO, affected chromatin accessibility and transcription of stress-related genes, but the triggering function of RNS on these regulatory processes remained elusive. Here, we show that GSNO reductase-deficient plants (gsnor1-3) accumulate S-adenosylmethionine (SAM), the principal methyl donor for methylation of DNA and histones. This SAM accumulation triggered a substantial increase in the methylation index (MI = [SAM]/[S-adenosylhomocysteine]), indicating the transmethylation activity and histone methylation status in higher eukaryotes. Indeed, a mass spectrometry-based global histone profiling approach demonstrated a significant global increase in H3K9me2, which was independently verified by immunological detection using a selective antibody. Since H3K9me2-modified regions tightly correlate with methylated DNA regions, we also determined the DNA methylation status of gsnor1-3 plants by whole-genome bisulfite sequencing. DNA methylation in the CG, CHG, and CHH contexts in gsnor1-3 was significantly enhanced compared to the wild type. We propose that GSNOR1 activity affects chromatin accessibility by controlling the transmethylation activity (MI) required for maintaining DNA methylation and the level of the repressive chromatin mark H3K9me2.
DOI:doi:10.3390/antiox10071128
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.3390/antiox10071128
 Volltext: https://www.mdpi.com/2076-3921/10/7/1128
 DOI: https://doi.org/10.3390/antiox10071128
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:DNA methylation
 histone methylation
 metaboloepigenetic
 nitric oxide
 S-adenosylhomocysteine
 S-nitrosoglutathione
 S-nitrosoglutathione reductase
K10plus-PPN:1775156176
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68793264   QR-Code
zum Seitenanfang