Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Verfasst von:Large, Steven J. [VerfasserIn]   i
Titel:Dissipation and Control in Microscopic Nonequilibrium Systems
Verf.angabe:by Steven J. Large
Ausgabe:1st ed. 2021.
Verlagsort:Cham
 Cham
Verlag:Springer International Publishing
 Imprint: Springer
E-Jahr:2021
Jahr:2021.
 2021.
Umfang:1 Online-Ressource(XVII, 236 p. 49 illus., 42 illus. in color.)
Gesamttitel/Reihe:Springer Theses, Recognizing Outstanding Ph.D. Research
 Springer eBook Collection
ISBN:978-3-030-85825-4
Abstract:Chapter 1. Introduction -- Chapter 2. Theoretical background -- Chapter 3. DNA hairpins I: Calculating the generalized friction -- Chapter 4. DNA Hairpins II: reducing dissipation in nonequilibrium protocols -- Chapter 5. DNA Hairpins III: robustness, variability, and conclusions -- Chapter 6. Stochastic control in microscopic nonequilibrium systems -- Chapter 7. Optimal discrete control: minimizing dissipation in discretely driven systems -- Chapter 8. On dissipation bounds: discrete stochastic control of nonequilibrium systems -- Chapter 9. Free energy transduction within autonomous systems -- Chapter 10. Hidden excess power and autonomous Maxwell demons in strongly coupled nonequilibrium systems -- Chapter 11. Conclusions and outlook.
 This thesis establishes a multifaceted extension of the deterministic control framework that has been a workhorse of nonequilibrium statistical mechanics, to stochastic, discrete, and autonomous control mechanisms. This facilitates the application of ideas from stochastic thermodynamics to the understanding of molecular machines in nanotechnology and in living things. It also gives a scale on which to evaluate the nonequilibrium energetic efficiency of molecular machines, guidelines for designing effective synthetic machines, and a perspective on the engineering principles that govern efficient microscopic energy transduction far from equilibrium. The thesis also documents the author’s design, analysis, and interpretation of the first experimental demonstration of the utility of this generally applicable method for designing energetically-efficient control in biomolecules. Protocols designed using this framework systematically reduced dissipation, when compared to naive protocols, in DNA hairpins across a wide range of experimental unfolding speeds and between sequences with wildly different physical characteristics.
DOI:doi:10.1007/978-3-030-85825-4
URL:Resolving-System: https://doi.org/10.1007/978-3-030-85825-4
 DOI: https://doi.org/10.1007/978-3-030-85825-4
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe
K10plus-PPN:1775323501
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68793735   QR-Code
zum Seitenanfang