Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kellerer, Christina [VerfasserIn]   i
 Jörres, Rudolf A. [VerfasserIn]   i
 Schneider, Antonius [VerfasserIn]   i
 Alter, Peter [VerfasserIn]   i
 Kauczor, Hans-Ulrich [VerfasserIn]   i
 Jobst, Bertram [VerfasserIn]   i
 Biederer, Jürgen [VerfasserIn]   i
 Bals, Robert [VerfasserIn]   i
 Watz, Henrik [VerfasserIn]   i
 Behr, Jürgen [VerfasserIn]   i
 Kauffmann-Guerrero, Diego [VerfasserIn]   i
 Lutter, Johanna [VerfasserIn]   i
 Hapfelmeier, Alexander [VerfasserIn]   i
 Magnussen, Helgo [VerfasserIn]   i
 Trudzinski, Franziska [VerfasserIn]   i
 Welte, Tobias [VerfasserIn]   i
 Vogelmeier, Claus F. [VerfasserIn]   i
 Kahnert, Kathrin [VerfasserIn]   i
Titel:Prediction of lung emphysema in COPD by spirometry and clinical symptoms
Titelzusatz:results from COSYCONET
Verf.angabe:Christina Kellerer, Rudolf A. Jörres, Antonius Schneider, Peter Alter, Hans-Ulrich Kauczor, Bertram Jobst, Jürgen Biederer, Robert Bals, Henrik Watz, Jürgen Behr, Diego Kauffmann-Guerrero, Johanna Lutter, Alexander Hapfelmeier, Helgo Magnussen, Franziska C. Trudzinski, Tobias Welte, Claus F. Vogelmeier and Kathrin Kahnert
E-Jahr:2021
Jahr:09 September 2021
Umfang:11 S.
Fussnoten:Gesehen am 26.10.2021
Titel Quelle:Enthalten in: Respiratory research
Ort Quelle:London : BioMed Central, 2001
Jahr Quelle:2021
Band/Heft Quelle:22(2021), Artikel-ID 242, Seite 1-11
ISSN Quelle:1465-993X
Abstract:Background: Lung emphysema is an important phenotype of chronic obstructive pulmonary disease (COPD), and CT scanning is strongly recommended to establish the diagnosis. This study aimed to identify criteria by which physicians with limited technical resources can improve the diagnosis of emphysema. Methods: We studied 436 COPD patients with prospective CT scans from the COSYCONET cohort. All items of the COPD Assessment Test (CAT) and the St George’s Respiratory Questionnaire (SGRQ), the modified Medical Research Council (mMRC) scale, as well as data from spirometry and CO diffusing capacity, were used to construct binary decision trees. The importance of parameters was checked by the Random Forest and AdaBoost machine learning algorithms. Results: When relying on questionnaires only, items CAT 1 & 7 and SGRQ 8 & 12 sub-item 3 were most important for the emphysema- versus airway-dominated phenotype, and among the spirometric measures FEV1/FVC. The combination of CAT item 1 (≤ 2) with mMRC (> 1) and FEV1/FVC, could raise the odds for emphysema by factor 7.7. About 50% of patients showed combinations of values that did not markedly alter the likelihood for the phenotypes, and these could be easily identified in the trees. Inclusion of CO diffusing capacity revealed the transfer coefficient as dominant measure. The results of machine learning were consistent with those of the single trees. Conclusions: Selected items (cough, sleep, breathlessness, chest condition, slow walking) from comprehensive COPD questionnaires in combination with FEV1/FVC could raise or lower the likelihood for lung emphysema in patients with COPD. The simple, parsimonious approach proposed by us might help if diagnostic resources regarding respiratory diseases are limited. Trial registration ClinicalTrials.gov, Identifier: NCT01245933, registered 18 November 2010, https://clinicaltrials.gov/ct2/show/record/NCT01245933.
DOI:doi:10.1186/s12931-021-01837-2
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1186/s12931-021-01837-2
 DOI: https://doi.org/10.1186/s12931-021-01837-2
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Adaboost
 COPD phenotypes
 CT scan
 Decision trees
 Emphysema
 Random forest
K10plus-PPN:1775327493
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68793759   QR-Code
zum Seitenanfang