Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Horvát, Emöke-Ágnes [VerfasserIn]   i
 Zhang, Jitao David [VerfasserIn]   i
 Uhlmann, Stefan [VerfasserIn]   i
 Şahin, Özgür [VerfasserIn]   i
 Zweig, Katharina A. [VerfasserIn]   i
Titel:A network-based method to assess the statistical significance of mild co-regulation effects
Verf.angabe:Emőke-Ágnes Horvát, Jitao David Zhang, Stefan Uhlmann, Özgür Sahin, Katharina Anna Zweig
E-Jahr:2013
Jahr:September 9, 2013
Umfang:14 S.
Fussnoten:Gesehen am 26.10.2021
Titel Quelle:Enthalten in: PLOS ONE
Ort Quelle:San Francisco, California, US : PLOS, 2006
Jahr Quelle:2013
Band/Heft Quelle:8(2013), 9, Artikel-ID e73413, Seite 1-14
ISSN Quelle:1932-6203
Abstract:Recent development of high-throughput, multiplexing technology has initiated projects that systematically investigate interactions between two types of components in biological networks, for instance transcription factors and promoter sequences, or microRNAs (miRNAs) and mRNAs. In terms of network biology, such screening approaches primarily attempt to elucidate relations between biological components of two distinct types, which can be represented as edges between nodes in a bipartite graph. However, it is often desirable not only to determine regulatory relationships between nodes of different types, but also to understand the connection patterns of nodes of the same type. Especially interesting is the co-occurrence of two nodes of the same type, i.e., the number of their common neighbours, which current high-throughput screening analysis fails to address. The co-occurrence gives the number of circumstances under which both of the biological components are influenced in the same way. Here we present SICORE, a novel network-based method to detect pairs of nodes with a statistically significant co-occurrence. We first show the stability of the proposed method on artificial data sets: when randomly adding and deleting observations we obtain reliable results even with noise exceeding the expected level in large-scale experiments. Subsequently, we illustrate the viability of the method based on the analysis of a proteomic screening data set to reveal regulatory patterns of human microRNAs targeting proteins in the EGFR-driven cell cycle signalling system. Since statistically significant co-occurrence may indicate functional synergy and the mechanisms underlying canalization, and thus hold promise in drug target identification and therapeutic development, we provide a platform-independent implementation of SICORE with a graphical user interface as a novel tool in the arsenal of high-throughput screening analysis.
DOI:doi:10.1371/journal.pone.0073413
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1371/journal.pone.0073413
 Volltext: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0073413
 DOI: https://doi.org/10.1371/journal.pone.0073413
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Algorithms
 Breast cancer
 Gene expression
 Gene regulation
 MicroRNAs
 Network analysis
 Signaling networks
 Transcription factors
K10plus-PPN:1775484807
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68793791   QR-Code
zum Seitenanfang