| Online-Ressource |
Verfasst von: | Hermann, Ingo [VerfasserIn]  |
| Martínez-Heras, Eloy [VerfasserIn]  |
| Rieger, Benedikt [VerfasserIn]  |
| Schmidt, Ralf [VerfasserIn]  |
| Golla, Alena-Kathrin [VerfasserIn]  |
| Hong, Jia-Sheng [VerfasserIn]  |
| Lee, Wei-Kai [VerfasserIn]  |
| Yu-Te, Wu [VerfasserIn]  |
| Nagtegaal, Martijn [VerfasserIn]  |
| Solana, Elisabeth [VerfasserIn]  |
| Llufriu, Sara [VerfasserIn]  |
| Gass, Achim [VerfasserIn]  |
| Schad, Lothar R. [VerfasserIn]  |
| Weingärtner, Sebastian [VerfasserIn]  |
| Zöllner, Frank G. [VerfasserIn]  |
Titel: | Accelerated white matter lesion analysis based on simultaneous T1 and T*2 quantification using magnetic resonance fingerprinting and deep learning |
Verf.angabe: | Ingo Hermann, Eloy Martínez-Heras, Benedikt Rieger, Ralf Schmidt, Alena-Kathrin Golla, Jia-Sheng Hong, Wei-Kai Lee, Wu Yu-Te, Martijn Nagtegaal, Elisabeth Solana, Sara Llufriu, Achim Gass, Lothar R. Schad, Sebastian Weingärtner, Frank G. Zöllner |
Jahr: | 2021 |
Umfang: | 16 S. |
Fussnoten: | First published: 05 February 2021 ; Im Titel sind die "1" und "2" tiefgestellt ; Im Titel ist das Sternchen hochgestellt ; Gesehen am 28.10.2021 |
Titel Quelle: | Enthalten in: Magnetic resonance in medicine |
Ort Quelle: | New York, NY [u.a.] : Wiley-Liss, 1984 |
Jahr Quelle: | 2021 |
Band/Heft Quelle: | 86(2021), 1, Seite 471-486 |
ISSN Quelle: | 1522-2594 |
Abstract: | Purpose To develop an accelerated postprocessing pipeline for reproducible and efficient assessment of white matter lesions using quantitative magnetic resonance fingerprinting (MRF) and deep learning. Methods MRF using echo-planar imaging (EPI) scans with varying repetition and echo times were acquired for whole brain quantification of and in 50 subjects with multiple sclerosis (MS) and 10 healthy volunteers along 2 centers. MRF and parametric maps were distortion corrected and denoised. A CNN was trained to reconstruct the and parametric maps, and the WM and GM probability maps. Results Deep learning-based postprocessing reduced reconstruction and image processing times from hours to a few seconds while maintaining high accuracy, reliability, and precision. Mean absolute error performed the best for (deviations 5.6%) and the logarithmic hyperbolic cosinus loss the best for (deviations 6.0%). Conclusions MRF is a fast and robust tool for quantitative and mapping. Its long reconstruction and several postprocessing steps can be facilitated and accelerated using deep learning. |
DOI: | doi:10.1002/mrm.28688 |
URL: | kostenfrei: Volltext: https://doi.org/10.1002/mrm.28688 |
| kostenfrei: Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.28688 |
| DOI: https://doi.org/10.1002/mrm.28688 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | deep learning reconstruction |
| magnetic resonance fingerprinting |
| mapping |
K10plus-PPN: | 177565866X |
Verknüpfungen: | → Zeitschrift |
|
|
| |
Lokale URL UB: | Zum Volltext |
Accelerated white matter lesion analysis based on simultaneous T1 and T*2 quantification using magnetic resonance fingerprinting and deep learning / Hermann, Ingo [VerfasserIn]; 2021 (Online-Ressource)