Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Hermann, Ingo [VerfasserIn]   i
 Martínez-Heras, Eloy [VerfasserIn]   i
 Rieger, Benedikt [VerfasserIn]   i
 Schmidt, Ralf [VerfasserIn]   i
 Golla, Alena-Kathrin [VerfasserIn]   i
 Hong, Jia-Sheng [VerfasserIn]   i
 Lee, Wei-Kai [VerfasserIn]   i
 Yu-Te, Wu [VerfasserIn]   i
 Nagtegaal, Martijn [VerfasserIn]   i
 Solana, Elisabeth [VerfasserIn]   i
 Llufriu, Sara [VerfasserIn]   i
 Gass, Achim [VerfasserIn]   i
 Schad, Lothar R. [VerfasserIn]   i
 Weingärtner, Sebastian [VerfasserIn]   i
 Zöllner, Frank G. [VerfasserIn]   i
Titel:Accelerated white matter lesion analysis based on simultaneous T1 and T*2 quantification using magnetic resonance fingerprinting and deep learning
Verf.angabe:Ingo Hermann, Eloy Martínez-Heras, Benedikt Rieger, Ralf Schmidt, Alena-Kathrin Golla, Jia-Sheng Hong, Wei-Kai Lee, Wu Yu-Te, Martijn Nagtegaal, Elisabeth Solana, Sara Llufriu, Achim Gass, Lothar R. Schad, Sebastian Weingärtner, Frank G. Zöllner
Jahr:2021
Umfang:16 S.
Fussnoten:First published: 05 February 2021 ; Im Titel sind die "1" und "2" tiefgestellt ; Im Titel ist das Sternchen hochgestellt ; Gesehen am 28.10.2021
Titel Quelle:Enthalten in: Magnetic resonance in medicine
Ort Quelle:New York, NY [u.a.] : Wiley-Liss, 1984
Jahr Quelle:2021
Band/Heft Quelle:86(2021), 1, Seite 471-486
ISSN Quelle:1522-2594
Abstract:Purpose To develop an accelerated postprocessing pipeline for reproducible and efficient assessment of white matter lesions using quantitative magnetic resonance fingerprinting (MRF) and deep learning. Methods MRF using echo-planar imaging (EPI) scans with varying repetition and echo times were acquired for whole brain quantification of and in 50 subjects with multiple sclerosis (MS) and 10 healthy volunteers along 2 centers. MRF and parametric maps were distortion corrected and denoised. A CNN was trained to reconstruct the and parametric maps, and the WM and GM probability maps. Results Deep learning-based postprocessing reduced reconstruction and image processing times from hours to a few seconds while maintaining high accuracy, reliability, and precision. Mean absolute error performed the best for (deviations 5.6%) and the logarithmic hyperbolic cosinus loss the best for (deviations 6.0%). Conclusions MRF is a fast and robust tool for quantitative and mapping. Its long reconstruction and several postprocessing steps can be facilitated and accelerated using deep learning.
DOI:doi:10.1002/mrm.28688
URL:kostenfrei: Volltext: https://doi.org/10.1002/mrm.28688
 kostenfrei: Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.28688
 DOI: https://doi.org/10.1002/mrm.28688
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:deep learning reconstruction
 magnetic resonance fingerprinting
 mapping
K10plus-PPN:177565866X
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68794689   QR-Code
zum Seitenanfang