Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Zhang, Yongwei [VerfasserIn]   i
 Ma, Chupeng [VerfasserIn]   i
 Cao, Li-qun [VerfasserIn]   i
 Shi, Dongyang [VerfasserIn]   i
Titel:Efficient multiscale algorithms for simulating nonlocal optical response of metallic nanostructure arrays
Verf.angabe:Yongwei Zhang, Chupeng Ma, Li-qun Cao, and Dongyang Shi
E-Jahr:2021
Jahr:July 15, 2021
Umfang:30 S.
Fussnoten:Gesehen am 03.11.2021
Titel Quelle:Enthalten in: Society for Industrial and Applied MathematicsSIAM journal on scientific computing
Ort Quelle:Philadelphia, Pa. : SIAM, 1993
Jahr Quelle:2021
Band/Heft Quelle:43(2021), 4, Seite B907-B936
ISSN Quelle:1095-7197
Abstract:In this paper, we consider numerical simulations of the nonlocal optical response of metallic nanostructure arrays inside a dielectric host, which is of particular interest to the nanoplasmonics community due to many unusual properties and potential applications. Mathematically, it is described by Maxwell's equations with discontinuous coefficients coupled with a set of Helmholtz-type equations defined only on the domains of metallic nanostructures. To solve this challenging problem, we develop an efficient multiscale method consisting of three steps. First, we extend the system into the domain occupied by the dielectric medium in a novel way and result in a coupled system with rapidly oscillating coefficients. A rigorous analysis of the error between the solutions of the original system and the extended system is given. Second, we derive the homogenized system and define the multiscale approximate solution for the extended system by using the multiscale asymptotic method. Third, to fix the inaccuracy of the multiscale asymptotic method inside the metallic nanostructures, we solve the original system in each metallic nanostructure separately with boundary conditions given by the multiscale approximate solution. A fast algorithm based on the $LU$ decomposition is proposed for solving the resulting linear systems. By applying the multiscale method, we obtain results that are in good agreement with those obtained by solving the original system directly at a much lower computational cost. Numerical examples are provided to validate the efficiency and accuracy of the proposed method.
DOI:doi:10.1137/20M1324120
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1137/20M1324120
 Volltext: https://epubs.siam.org/doi/10.1137/20M1324120
 DOI: https://doi.org/10.1137/20M1324120
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:65F10
 65N30
 65N55
 65Y05
 finite element method
 metallic nanostructure arrays
 multiscale asymptotic method
 nonlocal optical response
K10plus-PPN:177600793X
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68796198   QR-Code
zum Seitenanfang