Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Spreinat, Alexander [VerfasserIn]   i
 Dohmen, Maria M. [VerfasserIn]   i
 Lüttgens, Jan [VerfasserIn]   i
 Herrmann, Niklas [VerfasserIn]   i
 Klepzig, Lars F. [VerfasserIn]   i
 Nißler, Robert [VerfasserIn]   i
 Weber, Sabrina [VerfasserIn]   i
 Mann, Florian A. [VerfasserIn]   i
 Lauth, Jannika [VerfasserIn]   i
 Kruss, Sebastian [VerfasserIn]   i
Titel:Quantum defects in fluorescent carbon nanotubes for sensing and mechanistic studies
Verf.angabe:Alexander Spreinat, Maria M. Dohmen, Jan Lüttgens, Niklas Herrmann, Lars F. Klepzig, Robert Nißler, Sabrina Weber, Florian A. Mann, Jannika Lauth, and Sebastian Kruss
E-Jahr:2021
Jahr:August 11, 2021
Umfang:11 S.
Fussnoten:Gesehen am 05.11.2021
Titel Quelle:Enthalten in: The journal of physical chemistry <Washington, DC> / C
Ort Quelle:Washington, DC : Soc., 2007
Jahr Quelle:2021
Band/Heft Quelle:125(2021), 33, Seite 18341-18351
ISSN Quelle:1932-7455
Abstract:Single-wall carbon nanotubes (SWCNT) fluoresce in the near-infrared (NIR) region and have been assembled with biopolymers such as DNA to form highly sensitive molecular (bio)sensors. They change their fluorescence when they interact with analytes. Despite the progress in engineering these sensors, the underlying mechanisms are still not understood. Here, we identify processes and rate constants that explain the photophysical signal transduction by exploiting sp3 quantum defects in the sp2 carbon lattice of SWCNTs. As a model system, we use ssDNA-coated (6,5)-SWCNTs, which increase their NIR emission (E11, 990 nm) up to +250% in response to the important neurotransmitter dopamine. In contrast, SWCNTs coated with DNA but with a low number of NO2-aryl sp3 quantum defects decrease both their E11 (−35%) and defect-related E11* emission (−50%) at 1130 nm. Consequently, the interaction with the analyte does not change the radiative exciton decay pathway alone. Furthermore, the fluorescence response of pristine SWCNTs increases with SWCNT length, suggesting that exciton diffusion is affected. The quantum yield of pristine (6,5)-SWCNTs increases in response to the analyte from 0.6 to 1.3% and points to a change in non-radiative rate constants. These experimental results for dopamine and other analytes are explained by a Monte Carlo simulation of exciton diffusion, which supports a change in two non-radiative decay pathways together with an increase in exciton diffusion (three-rate constant model). The combination of such SWCNTs with defects and without defects enables the assembly of ratiometric biosensors with opposing responses at different wavelengths. In summary, we demonstrate how perturbation of a nanomaterial with quantum defects reveals the photophysical mechanism and reverses optical responses of biosensors.
DOI:doi:10.1021/acs.jpcc.1c05432
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1021/acs.jpcc.1c05432
 Volltext: https://pubs.acs.org/doi/10.1021/acs.jpcc.1c05432
 DOI: https://doi.org/10.1021/acs.jpcc.1c05432
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1776248988
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68797183   QR-Code
zum Seitenanfang