Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Bock, Hans Georg [VerfasserIn]  |
| Gutekunst, Jürgen [VerfasserIn]  |
| Potschka, Andreas [VerfasserIn]  |
| Suárez Garcés, María Elena [VerfasserIn]  |
Titel: | A flow perspective on nonlinear least-squares problems |
Verf.angabe: | Hans Georg Bock, Jürgen Gutekunst, Andreas Potschka, María Elena Suaréz Garcés |
E-Jahr: | 2020 |
Jahr: | 03 October 2020 |
Umfang: | 17 S. |
Fussnoten: | Gesehen am 25.11.2021 |
Titel Quelle: | Enthalten in: Vietnam journal of mathematics |
Ort Quelle: | Singapore : Springer, 1999 |
Jahr Quelle: | 2020 |
Band/Heft Quelle: | 48(2020), 4, Seite 987-1003 |
ISSN Quelle: | 2305-2228 |
Abstract: | Just as the damped Newton method for the numerical solution of nonlinear algebraic problems can be interpreted as a forward Euler timestepping on the Newton flow equations, the damped Gauß-Newton method for nonlinear least squares problems is equivalent to forward Euler timestepping on the corresponding Gauß-Newton flow equations. We highlight the advantages of the Gauß-Newton flow and the Gauß-Newton method from a statistical and a numerical perspective in comparison with the Newton method, steepest descent, and the Levenberg-Marquardt method, which are respectively equivalent to Newton flow forward Euler, gradient flow forward Euler, and gradient flow backward Euler. We finally show an unconditional descent property for a generalized Gauß-Newton flow, which is linked to Krylov-Gauß-Newton methods for large-scale nonlinear least squares problems. We provide numerical results for large-scale problems: An academic generalized Rosenbrock function and a real-world bundle adjustment problem from 3D reconstruction based on 2D images. |
DOI: | doi:10.1007/s10013-020-00441-z |
URL: | kostenfrei: Volltext: https://doi.org/10.1007/s10013-020-00441-z |
| DOI: https://doi.org/10.1007/s10013-020-00441-z |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1779072058 |
Verknüpfungen: | → Zeitschrift |
|
|
| |
Lokale URL UB: | Zum Volltext |
¬A¬ flow perspective on nonlinear least-squares problems / Bock, Hans Georg [VerfasserIn]; 03 October 2020 (Online-Ressource)
68805237