Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Bock, Hans Georg [VerfasserIn]   i
 Gutekunst, Jürgen [VerfasserIn]   i
 Potschka, Andreas [VerfasserIn]   i
 Suárez Garcés, María Elena [VerfasserIn]   i
Titel:A flow perspective on nonlinear least-squares problems
Verf.angabe:Hans Georg Bock, Jürgen Gutekunst, Andreas Potschka, María Elena Suaréz Garcés
E-Jahr:2020
Jahr:03 October 2020
Umfang:17 S.
Fussnoten:Gesehen am 25.11.2021
Titel Quelle:Enthalten in: Vietnam journal of mathematics
Ort Quelle:Singapore : Springer, 1999
Jahr Quelle:2020
Band/Heft Quelle:48(2020), 4, Seite 987-1003
ISSN Quelle:2305-2228
Abstract:Just as the damped Newton method for the numerical solution of nonlinear algebraic problems can be interpreted as a forward Euler timestepping on the Newton flow equations, the damped Gauß-Newton method for nonlinear least squares problems is equivalent to forward Euler timestepping on the corresponding Gauß-Newton flow equations. We highlight the advantages of the Gauß-Newton flow and the Gauß-Newton method from a statistical and a numerical perspective in comparison with the Newton method, steepest descent, and the Levenberg-Marquardt method, which are respectively equivalent to Newton flow forward Euler, gradient flow forward Euler, and gradient flow backward Euler. We finally show an unconditional descent property for a generalized Gauß-Newton flow, which is linked to Krylov-Gauß-Newton methods for large-scale nonlinear least squares problems. We provide numerical results for large-scale problems: An academic generalized Rosenbrock function and a real-world bundle adjustment problem from 3D reconstruction based on 2D images.
DOI:doi:10.1007/s10013-020-00441-z
URL:kostenfrei: Volltext: https://doi.org/10.1007/s10013-020-00441-z
 DOI: https://doi.org/10.1007/s10013-020-00441-z
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1779072058
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68805237   QR-Code
zum Seitenanfang