Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Durstewitz, Daniel [VerfasserIn]   i
 Huys, Quentin J. M. [VerfasserIn]   i
 Koppe, Georgia [VerfasserIn]   i
Titel:Psychiatric illnesses as disorders of network dynamics
Verf.angabe:Daniel Durstewitz, Quentin J.M. Huys, and Georgia Koppe
Jahr:2021
Umfang:12 S.
Fussnoten:First published: 16 January 2020 ; Gesehen am 01.12.2021
Titel Quelle:Enthalten in: Biological psychiatry. Cognitive neuroscience and neuroimaging
Ort Quelle:Amsterdam [u.a.] : Elsevier Inc., 2016
Jahr Quelle:2021
Band/Heft Quelle:6(2021), 9 vom: Sept., Seite 865-876
ISSN Quelle:2451-9030
Abstract:This review provides a dynamical systems perspective on mental illness. After a brief introduction to the theory of dynamical systems, we focus on the common assumption in theoretical and computational neuroscience that phenomena at subcellular, cellular, network, cognitive, and even societal levels could be described and explained in terms of dynamical systems theory. As such, dynamical systems theory may also provide a framework for understanding mental illnesses. The review examines a number of core dynamical systems phenomena and relates each of these to aspects of mental illnesses. This provides an outline of how a broad set of phenomena in serious and common mental illnesses and neurological conditions can be understood in dynamical systems terms. It suggests that the dynamical systems level may provide a central, hublike level of convergence that unifies and links multiple biophysical and behavioral phenomena in the sense that diverse biophysical changes can give rise to the same dynamical phenomena and, vice versa, similar changes in dynamics may yield different behavioral symptoms depending on the brain area where these changes manifest. We also briefly outline current methodological approaches for inferring dynamical systems from data such as electroencephalography, functional magnetic resonance imaging, or self-reports, and we discuss the implications of a dynamical view for the diagnosis, prognosis, and treatment of psychiatric conditions. We argue that a consideration of dynamics could play a potentially transformative role in the choice and target of interventions.
DOI:doi:10.1016/j.bpsc.2020.01.001
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1016/j.bpsc.2020.01.001
 Volltext: https://www.sciencedirect.com/science/article/pii/S2451902220300197
 DOI: https://doi.org/10.1016/j.bpsc.2020.01.001
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Attractor
 Chaos
 Dynamical systems
 Machine learning
 Recurrent neural networks
 Schizophrenia
K10plus-PPN:1780015585
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68807150   QR-Code
zum Seitenanfang