Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Köhler, Sven [VerfasserIn]   i
 Hussain, Tarique [VerfasserIn]   i
 Blair, Zach [VerfasserIn]   i
 Huffaker, Tyler [VerfasserIn]   i
 Ritzmann, Florian [VerfasserIn]   i
 Tandon, Animesh [VerfasserIn]   i
 Pickardt, Thomas [VerfasserIn]   i
 Sarikouch, Samir [VerfasserIn]   i
 Latus, Heiner [VerfasserIn]   i
 Greil, Gerald [VerfasserIn]   i
 Wolf, Ivo [VerfasserIn]   i
 Engelhardt, Sandy [VerfasserIn]   i
Titel:Unsupervised domain adaptation from axial to short-axis multi-slice cardiac MR images by incorporating pretrained task networks
Verf.angabe:Sven Koehler, Tarique Hussain, Zach Blair, Tyler Huffaker, Florian Ritzmann, Animesh Tandon, Thomas Pickardt, Samir Sarikouch, Heiner Latus, Gerald Greil, Ivo Wolf, and Sandy Engelhardt
E-Jahr:2021
Jahr:20 January 2021
Umfang:15 S.
Fussnoten:Gesehen am 08.12.2021
Titel Quelle:Enthalten in: Institute of Electrical and Electronics EngineersIEEE transactions on medical imaging
Ort Quelle:New York, NY : Institute of Electrical and Electronics Engineers, 1982
Jahr Quelle:2021
Band/Heft Quelle:40(2021), 10 vom: Okt., Seite 2939-2953
ISSN Quelle:1558-254X
Abstract:Anisotropic multi-slice Cardiac Magnetic Resonance (CMR) Images are conventionally acquired in patient-specific short-axis (SAX) orientation. In specific cardiovascular diseases that affect right ventricular (RV) morphology, acquisitions in standard axial (AX) orientation are preferred by some investigators, due to potential superiority in RV volume measurement for treatment planning. Unfortunately, due to the rare occurrence of these diseases, data in this domain is scarce. Recent research in deep learning-based methods mainly focused on SAX CMR images and they had proven to be very successful. In this work, we show that there is a considerable domain shift between AX and SAX images, and therefore, direct application of existing models yield sub-optimal results on AX samples. We propose a novel unsupervised domain adaptation approach, which uses task-related probabilities in an attention mechanism. Beyond that, cycle consistency is imposed on the learned patient-individual 3D rigid transformation to improve stability when automatically re-sampling the AX images to SAX orientations. The network was trained on 122 registered 3D AX-SAX CMR volume pairs from a multi-centric patient cohort. A mean 3D Dice of 0.86 ± 0.06 for the left ventricle, 0.65 ± 0.08 for the myocardium, and 0.77 ± 0.10 for the right ventricle could be achieved. This is an improvement of 25% in Dice for RV in comparison to direct application on axial slices. To conclude, our pre-trained task module has neither seen CMR images nor labels from the target domain, but is able to segment them after the domain gap is reduced. Code: https://github.com/Cardio-AI/3d-mri-domain-adaptation
DOI:doi:10.1109/TMI.2021.3052972
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1109/TMI.2021.3052972
 DOI: https://doi.org/10.1109/TMI.2021.3052972
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Biomedical imaging
 Cardiac magnetic resonance
 competence network for congenital heart defects
 Deep learning
 Heart
 Image segmentation
 short axis images
 spatial transformer networks
 Task analysis
 Three-dimensional displays
 Training
 unsupervised domain adaptation
K10plus-PPN:1780701624
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68810054   QR-Code
zum Seitenanfang