Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Galvani, Alessandro [VerfasserIn]   i
 Gori, Giacomo [VerfasserIn]   i
 Trombettoni, Andrea [VerfasserIn]   i
Titel:Magnetization profiles at the upper critical dimension as solutions of the integer Yamabe problem
Verf.angabe:Alessandro Galvani, Giacomo Gori, and Andrea Trombettoni
E-Jahr:2021
Jahr:30 August 2021
Umfang:12 S.
Fussnoten:Gesehen am 07.10.2022
Titel Quelle:Enthalten in: Physical review
Ort Quelle:Woodbury, NY : Inst., 2016
Jahr Quelle:2021
Band/Heft Quelle:104(2021), 2, Artikel-ID 024138, Seite 1-12
ISSN Quelle:2470-0053
Abstract:We study the connection between the magnetization profiles of models described by a scalar field with marginal interaction term in a bounded domain and the solutions of the so-called Yamabe problem in the same domain, which amounts to finding a metric having constant curvature. Taking the slab as a reference domain, we first study the magnetization profiles at the upper critical dimensions d = 3, 4, 6 for different (scale-invariant) boundary conditions. By studying the saddle-point equations for the magnetization, we find general formulas in terms of Weierstrass elliptic functions, extending exact results known in literature and finding ones for the case of percolation. The zeros and poles of the Weierstrass elliptic solutions can be put in direct connection with the boundary conditions. We then show that, for any dimension d, the magnetization profiles are solution of the corresponding integer Yamabe equation at the same d and with the same boundary conditions. The magnetization profiles in the specific case of the four-dimensional Ising model with fixed boundary conditions are compared with Monte Carlo simulations, finding good agreement. These results explicitly confirm at the upper critical dimension recent results presented in Gori and Trombettoni [J. Stat. Mech: Theory Exp. (2020) 063210].
DOI:doi:10.1103/PhysRevE.104.024138
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1103/PhysRevE.104.024138
 Volltext: https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=DOISource&SrcApp=WOS&KeyAID=10.1103%2Fphysrev ...
 DOI: https://doi.org/10.1103/PhysRevE.104.024138
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:casimir amplitudes
 critical exponents
 matrix
 model
 percolation problem
K10plus-PPN:1780701853
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68810055   QR-Code
zum Seitenanfang