Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Ozdemir, Bahadir [VerfasserIn]   i
 Abd-Almageed, Wael [VerfasserIn]   i
 Rössler, Stephanie [VerfasserIn]   i
 Wang, Xin Wei [VerfasserIn]   i
Titel:iSubgraph
Titelzusatz:integrative genomics for subgroup discovery in hepatocellular carcinoma using graph mining and mixture models
Verf.angabe:Bahadir Ozdemir, Wael Abd-Almageed, Stephanie Roessler, Xin Wei Wang
E-Jahr:2013
Jahr:November 4, 2013
Umfang:16 S.
Fussnoten:Gesehen am 13.12.2021
Titel Quelle:Enthalten in: PLOS ONE
Ort Quelle:San Francisco, California, US : PLOS, 2006
Jahr Quelle:2013
Band/Heft Quelle:8(2013), 11, Artikel-ID e78624, Seite 1-16
ISSN Quelle:1932-6203
Abstract:The high tumor heterogeneity makes it very challenging to identify key tumorigenic pathways as therapeutic targets. The integration of multiple omics data is a promising approach to identify driving regulatory networks in patient subgroups. Here, we propose a novel conceptual framework to discover patterns of miRNA-gene networks, observed frequently up- or down-regulated in a group of patients and to use such networks for patient stratification in hepatocellular carcinoma (HCC). We developed an integrative subgraph mining approach, called iSubgraph, and identified altered regulatory networks frequently observed in HCC patients. The miRNA and gene expression profiles were jointly analyzed in a graph structure. We defined a method to transform microarray data into graph representation that encodes miRNA and gene expression levels and the interactions between them as well. The iSubgraph algorithm was capable to detect cooperative regulation of miRNAs and genes even if it occurred only in some patients. Next, the miRNA-mRNA modules were used in an unsupervised class prediction model to discover HCC subgroups via patient clustering by mixture models. The robustness analysis of the mixture model showed that the class predictions are highly stable. Moreover, the Kaplan-Meier survival analysis revealed that the HCC subgroups identified by the algorithm have different survival characteristics. The pathway analyses of the miRNA-mRNA co-modules identified by the algorithm demonstrate key roles of Myc, E2F1, let-7, TGFB1, TNF and EGFR in HCC subgroups. Thus, our method can integrate various omics data derived from different platforms and with different dynamic scales to better define molecular tumor subtypes. iSubgraph is available as MATLAB code at http://www.cs.umd.edu/~ozdemir/isubgraph/.
DOI:doi:10.1371/journal.pone.0078624
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1371/journal.pone.0078624
 Volltext: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078624
 DOI: https://doi.org/10.1371/journal.pone.0078624
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Cancers and neoplasms
 Gene expression
 Gene regulatory networks
 Hepatocellular carcinoma
 Lung and intrathoracic tumors
 Malignant tumors
 Microarrays
 MicroRNAs
K10plus-PPN:1781998434
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68819224   QR-Code
zum Seitenanfang