Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Deutelmoser, Heike [VerfasserIn]   i
 Scherer, Dominique [VerfasserIn]   i
 Brenner, Hermann [VerfasserIn]   i
 Waldenberger, Melanie [VerfasserIn]   i
 Suhre, Karsten [VerfasserIn]   i
 Kastenmüller, Gabi [VerfasserIn]   i
 Lorenzo Bermejo, Justo [VerfasserIn]   i
Titel:Robust Huber-LASSO for improved prediction of protein, metabolite and gene expression levels relying on individual genotype data
Verf.angabe:Heike Deutelmoser, Dominique Scherer, Hermann Brenner, Melanie Waldenberger, INTERVAL study, Karsten Suhre, Gabi Kastenmüller and Justo Lorenzo Bermejo
Jahr:2021
Umfang:12 S.
Fussnoten:Published: 16 October 2020 ; Gesehen am 13.12.2021
Titel Quelle:Enthalten in: Briefings in bioinformatics
Ort Quelle:Oxford [u.a.] : Oxford University Press, 2000
Jahr Quelle:2021
Band/Heft Quelle:22(2021), 4, Artikel-ID bbaa230, Seite 1-12
ISSN Quelle:1477-4054
Abstract:Least absolute shrinkage and selection operator (LASSO) regression is often applied to select the most promising set of single nucleotide polymorphisms (SNPs) associated with a molecular phenotype of interest. While the penalization parameter λ restricts the number of selected SNPs and the potential model overfitting, the least-squares loss function of standard LASSO regression translates into a strong dependence of statistical results on a small number of individuals with phenotypes or genotypes divergent from the majority of the study population—typically comprised of outliers and high-leverage observations.Robust methods have been developed to constrain the influence of divergent observations and generate statistical results that apply to the bulk of study data, but they have rarely been applied to genetic association studies. In this article, we review, for newcomers to the field of robust statistics, a novel version of standard LASSO that utilizes the Huber loss function. We conduct comprehensive simulations and analyze real protein, metabolite, mRNA expression and genotype data to compare the stability of penalization, the cross-iteration concordance of the model, the false-positive and true-positive rates and the prediction accuracy of standard and robust Huber-LASSO.Although the two methods showed controlled false-positive rates ≤2.1% and similar true-positive rates, robust Huber-LASSO outperformed standard LASSO in the accuracy of predicted protein, metabolite and gene expression levels using individual SNP data. The conducted simulations and real-data analyses show that robust Huber-LASSO represents a valuable alternative to standard LASSO in genetic studies of molecular phenotypes.
DOI:doi:10.1093/bib/bbaa230
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1093/bib/bbaa230
 DOI: https://doi.org/10.1093/bib/bbaa230
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1782024328
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68819301   QR-Code
zum Seitenanfang