Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Tan, Canzhu [VerfasserIn]   i
 Lin, Xiaodong [VerfasserIn]   i
 Zhou, Yabing [VerfasserIn]   i
 Jiang, Yuhai [VerfasserIn]   i
 Weidemüller, Matthias [VerfasserIn]   i
 Zhu, Bing [VerfasserIn]   i
Titel:Dynamics of position disordered Ising spins with a soft-core potential
Verf.angabe:Canzhu Tan, Xiaodong Lin, Yabing Zhou, Y.H. Jiang, Matthias Weidemüller, and Bing Zhu
E-Jahr:2021
Jahr:November 2, 2021
Umfang:7 S.
Fussnoten:Gesehen am 14.12.2021
Titel Quelle:Enthalten in: De.arxiv.org
Ort Quelle:[S.l.] : Arxiv.org, 1991
Jahr Quelle:2021
Band/Heft Quelle:(2021), Artikel-ID 2111.00779, Seite 1-7
Abstract:We theoretically study magnetization relaxation of Ising spins distributed randomly in a $d$-dimension homogeneous and Gaussian profile under a soft-core two-body interaction potential $\propto1/[1+(r/R_c)^\alpha]$ ($\alpha\ge d$), where $r$ is the inter-spin distance and $R_c$ is the soft-core radius. The dynamics starts with all spins polarized in the transverse direction. In the homogeneous case, an analytic expression is derived at the thermodynamic limit, which starts as $\propto\exp(-t^2)$ and follows a stretched-exponential law asymptotically at long time with an exponent $\beta=d/\alpha$. In between an oscillating behaviour is observed with a damping amplitude. For Gaussian samples, the degree of disorder in the system can be controlled by the ratio $l_\rho/R_c$ with $l_\rho$ the mean inter-spin distance and the magnetization dynamics is investigated numerically. In the limit of $l_\rho/R_c\ll1$, a coherent many-body dynamics is recovered for the total magnetization despite of the position disorder of spins. In the opposite limit of $l_\rho/R_c\gg1$, a similar dynamics as that in the homogeneous case emerges at later time after a initial fast decay of the magnetization. We obtain a stretched exponent of $\beta\approx0.18$ for the asymptotic evolution with $d=3, \alpha=6$, which is different from that in the homogeneous case ($\beta=0.5$).
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: http://arxiv.org/abs/2111.00779
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Condensed Matter - Disordered Systems and Neural Networks
 Condensed Matter - Statistical Mechanics
 Physics - Atomic Physics
 Quantum Physics
K10plus-PPN:1782088040
Verknüpfungen:→ Sammelwerk

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68822797   QR-Code
zum Seitenanfang