Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Gahn, Markus [VerfasserIn]   i
Titel:Singular limit for reactive transport through a thin heterogeneous layer including a nonlinear diffusion coefficient
Verf.angabe:Markus Gahn
E-Jahr:2022
Jahr:January 2022
Umfang:22 S.
Fussnoten:Gesehen am 04.01.2022
Titel Quelle:Enthalten in: Communications on pure and applied analysis
Ort Quelle:Springfield, Mo. : AIMS, 2002
Jahr Quelle:2022
Band/Heft Quelle:21(2022), 1, Seite 61-82
ISSN Quelle:1534-0392
Abstract:<p style='text-indent:20px;'>Reactive transport processes in porous media including thin heterogeneous layers play an important role in many applications. In this paper, we investigate a reaction-diffusion problem with nonlinear diffusion in a domain consisting of two bulk domains which are separated by a thin layer with a periodic heterogeneous structure. The thickness of the layer, as well as the periodicity within the layer are of order <inline-formula><tex-math id="M1">\begin{document}$ \epsilon $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M2">\begin{document}$ \epsilon $\end{document}</tex-math></inline-formula> is much smaller than the size of the bulk domains. For the singular limit <inline-formula><tex-math id="M3">\begin{document}$ \epsilon \to 0 $\end{document}</tex-math></inline-formula>, when the thin layer reduces to an interface, we rigorously derive a macroscopic model with effective interface conditions between the two bulk domains. Due to the oscillations within the layer, we have the combine dimension reduction techniques with methods from the homogenization theory. To cope with these difficulties, we make use of the two-scale convergence in thin heterogeneous layers. However, in our case the diffusion in the thin layer is low and depends nonlinearly on the concentration itself. The low diffusion leads to a two-scale limit depending on a macroscopic and a microscopic variable. Hence, weak compactness results based on standard <i>a priori</i> estimates are not enough to pass to the limit <inline-formula><tex-math id="M4">\begin{document}$ \epsilon \to 0 $\end{document}</tex-math></inline-formula> in the nonlinear terms. Therefore, we derive strong two-scale compactness results based on a variational principle. Further, we establish uniqueness for the microscopic and the macroscopic model.</p>
DOI:doi:10.3934/cpaa.2021167
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.3934/cpaa.2021167
 Volltext: https://www.aimsciences.org/article/doi/10.3934/cpaa.2021167
 DOI: https://doi.org/10.3934/cpaa.2021167
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:178457208X
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68862514   QR-Code
zum Seitenanfang