Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kiehl, Lennard [VerfasserIn]   i
 Kuntz, Sara [VerfasserIn]   i
 Höhn, Julia [VerfasserIn]   i
 Jutzi, Tanja [VerfasserIn]   i
 Krieghoff-Henning, Eva [VerfasserIn]   i
 Kather, Jakob Nikolas [VerfasserIn]   i
 Holland-Letz, Tim [VerfasserIn]   i
 Kopp-Schneider, Annette [VerfasserIn]   i
 Chang-Claude, Jenny [VerfasserIn]   i
 Brobeil, Alexander [VerfasserIn]   i
 Kalle, Christof von [VerfasserIn]   i
 Fröhling, Stefan [VerfasserIn]   i
 Alwers, Elizabeth [VerfasserIn]   i
 Brenner, Hermann [VerfasserIn]   i
 Hoffmeister, Michael [VerfasserIn]   i
 Brinker, Titus Josef [VerfasserIn]   i
Titel:Deep learning can predict lymph node status directly from histology in colorectal cancer
Verf.angabe:Lennard Kiehl, Sara Kuntz, Julia Höhn, Tanja Jutzi, Eva Krieghoff-Henning, Jakob N. Kather, Tim Holland-Letz, Annette Kopp-Schneider, Jenny Chang-Claude, Alexander Brobeil, Christof von Kalle, Stefan Fröhling, Elizabeth Alwers, Hermann Brenner, Michael Hoffmeister, Titus J. Brinker
E-Jahr:2021
Jahr:11 October 2021
Umfang:10 S.
Fussnoten:Gesehen am 22.01.2022
Titel Quelle:Enthalten in: European journal of cancer
Ort Quelle:Amsterdam [u.a.] : Elsevier, 1992
Jahr Quelle:2021
Band/Heft Quelle:157(2021), Seite 464-473
ISSN Quelle:1879-0852
Abstract:Background - Lymph node status is a prognostic marker and strongly influences therapeutic decisions in colorectal cancer (CRC). - Objectives - The objective of the study is to investigate whether image features extracted by a deep learning model from routine histological slides and/or clinical data can be used to predict CRC lymph node metastasis (LNM). - Methods - Using histological whole slide images (WSIs) of primary tumours of 2431 patients in the DACHS cohort, we trained a convolutional neural network to predict LNM. In parallel, we used clinical data derived from the same cases in logistic regression analyses. Subsequently, the slide-based artificial intelligence predictor (SBAIP) score was included in the regression. WSIs and data from 582 patients of the TCGA cohort were used as the external test set. - Results - On the internal test set, the SBAIP achieved an area under receiver operating characteristic (AUROC) of 71.0%, the clinical classifier achieved an AUROC of 67.0% and a combination of the two classifiers yielded an improvement to 74.1%. Whereas the clinical classifier's performance remained stable on the TCGA set, performance of the SBAIP dropped to an AUROC of 61.2%. Performance of the clinical classifier depended strongly on the T stage. - Conclusion - Deep learning-based image analysis may help predict LNM of patients with CRC using routine histological slides. Combination with clinical data such as T stage might be useful. Strategies to increase performance of the SBAIP on external images should be investigated.
DOI:doi:10.1016/j.ejca.2021.08.039
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.ejca.2021.08.039
 Volltext: https://www.sciencedirect.com/science/article/pii/S0959804921005700
 DOI: https://doi.org/10.1016/j.ejca.2021.08.039
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Clinical data
 CNN
 Colorectal cancer
 Deep learning
 Lymph node status
K10plus-PPN:1786951630
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68869770   QR-Code
zum Seitenanfang