| Online-Ressource |
Verfasst von: | Kiehl, Lennard [VerfasserIn]  |
| Kuntz, Sara [VerfasserIn]  |
| Höhn, Julia [VerfasserIn]  |
| Jutzi, Tanja [VerfasserIn]  |
| Krieghoff-Henning, Eva [VerfasserIn]  |
| Kather, Jakob Nikolas [VerfasserIn]  |
| Holland-Letz, Tim [VerfasserIn]  |
| Kopp-Schneider, Annette [VerfasserIn]  |
| Chang-Claude, Jenny [VerfasserIn]  |
| Brobeil, Alexander [VerfasserIn]  |
| Kalle, Christof von [VerfasserIn]  |
| Fröhling, Stefan [VerfasserIn]  |
| Alwers, Elizabeth [VerfasserIn]  |
| Brenner, Hermann [VerfasserIn]  |
| Hoffmeister, Michael [VerfasserIn]  |
| Brinker, Titus Josef [VerfasserIn]  |
Titel: | Deep learning can predict lymph node status directly from histology in colorectal cancer |
Verf.angabe: | Lennard Kiehl, Sara Kuntz, Julia Höhn, Tanja Jutzi, Eva Krieghoff-Henning, Jakob N. Kather, Tim Holland-Letz, Annette Kopp-Schneider, Jenny Chang-Claude, Alexander Brobeil, Christof von Kalle, Stefan Fröhling, Elizabeth Alwers, Hermann Brenner, Michael Hoffmeister, Titus J. Brinker |
E-Jahr: | 2021 |
Jahr: | 11 October 2021 |
Umfang: | 10 S. |
Fussnoten: | Gesehen am 22.01.2022 |
Titel Quelle: | Enthalten in: European journal of cancer |
Ort Quelle: | Amsterdam [u.a.] : Elsevier, 1992 |
Jahr Quelle: | 2021 |
Band/Heft Quelle: | 157(2021), Seite 464-473 |
ISSN Quelle: | 1879-0852 |
Abstract: | Background - Lymph node status is a prognostic marker and strongly influences therapeutic decisions in colorectal cancer (CRC). - Objectives - The objective of the study is to investigate whether image features extracted by a deep learning model from routine histological slides and/or clinical data can be used to predict CRC lymph node metastasis (LNM). - Methods - Using histological whole slide images (WSIs) of primary tumours of 2431 patients in the DACHS cohort, we trained a convolutional neural network to predict LNM. In parallel, we used clinical data derived from the same cases in logistic regression analyses. Subsequently, the slide-based artificial intelligence predictor (SBAIP) score was included in the regression. WSIs and data from 582 patients of the TCGA cohort were used as the external test set. - Results - On the internal test set, the SBAIP achieved an area under receiver operating characteristic (AUROC) of 71.0%, the clinical classifier achieved an AUROC of 67.0% and a combination of the two classifiers yielded an improvement to 74.1%. Whereas the clinical classifier's performance remained stable on the TCGA set, performance of the SBAIP dropped to an AUROC of 61.2%. Performance of the clinical classifier depended strongly on the T stage. - Conclusion - Deep learning-based image analysis may help predict LNM of patients with CRC using routine histological slides. Combination with clinical data such as T stage might be useful. Strategies to increase performance of the SBAIP on external images should be investigated. |
DOI: | doi:10.1016/j.ejca.2021.08.039 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.1016/j.ejca.2021.08.039 |
| Volltext: https://www.sciencedirect.com/science/article/pii/S0959804921005700 |
| DOI: https://doi.org/10.1016/j.ejca.2021.08.039 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Clinical data |
| CNN |
| Colorectal cancer |
| Deep learning |
| Lymph node status |
K10plus-PPN: | 1786951630 |
Verknüpfungen: | → Zeitschrift |
Deep learning can predict lymph node status directly from histology in colorectal cancer / Kiehl, Lennard [VerfasserIn]; 11 October 2021 (Online-Ressource)